POLE GUYING AND BRACING

<table>
<thead>
<tr>
<th>TITLE / DESCRIPTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructional Guide</td>
<td>4-2-1</td>
</tr>
<tr>
<td>Sidewalk Guying</td>
<td>4-3-1</td>
</tr>
<tr>
<td>Down Guying</td>
<td>4-4-1</td>
</tr>
<tr>
<td>Double Down Guying</td>
<td>4-5-1</td>
</tr>
<tr>
<td>Overhead Guying</td>
<td>4-6-1</td>
</tr>
<tr>
<td>Overhead Guy to Self-Supporting Stub Pole</td>
<td>4-7-1</td>
</tr>
<tr>
<td>Temporary Tangent 12kV Pole Brace Near Trench</td>
<td>4-8-1</td>
</tr>
<tr>
<td>Butt Plate Bracing</td>
<td>4-9-1</td>
</tr>
<tr>
<td>Stabilizing Backfill</td>
<td>4-10-1</td>
</tr>
<tr>
<td>Hand Digging Labor Code</td>
<td>4-11-1</td>
</tr>
<tr>
<td>Pole Key Bracing</td>
<td>4-12-1</td>
</tr>
<tr>
<td>Push Pole Bracing</td>
<td>4-13-1</td>
</tr>
<tr>
<td>Temporary Wood Pole Bracing</td>
<td>4-14-1</td>
</tr>
<tr>
<td>Guy Guard Stub</td>
<td>4-15-1</td>
</tr>
<tr>
<td>Down Guys with Pole Bands</td>
<td>4-16-1</td>
</tr>
<tr>
<td>Primary, Secondary, and Pedestrian Guy Guards</td>
<td>4-17-1</td>
</tr>
<tr>
<td>Corrosion Resistant Anchor and Rod</td>
<td>4-18-1</td>
</tr>
<tr>
<td>Hand Dig Anchor and Rod</td>
<td>4-19-1</td>
</tr>
<tr>
<td>Log Anchors</td>
<td>4-20-1</td>
</tr>
<tr>
<td>Grouted Rock Anchors</td>
<td>4-21-1</td>
</tr>
<tr>
<td>Surface Rock Anchors</td>
<td>4-22-1</td>
</tr>
<tr>
<td>Ungrounded Insulated Guys</td>
<td>4-23-1</td>
</tr>
<tr>
<td>Miscellaneous Guying Standards</td>
<td>4-24-1</td>
</tr>
<tr>
<td>Transmission with Distribution Underbuild with Span Guys</td>
<td>4-25-1</td>
</tr>
<tr>
<td>Transmission with Distribution Underbuild with Span Guys (Failed)</td>
<td>4-25-2</td>
</tr>
<tr>
<td>Transmission Deadend with Distribution Underbuild at 90°</td>
<td>4-26-1</td>
</tr>
<tr>
<td>Transmission Deadend with Distribution Underbuild at 90° (Failed)</td>
<td>4-26-2</td>
</tr>
<tr>
<td>Transmission Deadend with Distribution Underbuild Continuing On</td>
<td>4-27-1</td>
</tr>
<tr>
<td>Transmission Deadend with Distribution Underbuild Continuing On (Failed)</td>
<td>4-27-2</td>
</tr>
<tr>
<td>Distribution, Vertical Construction</td>
<td>4-28-1</td>
</tr>
<tr>
<td>TITLE / DESCRIPTION</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Distribution, Vertical Construction (Failed)</td>
<td>4-28-2</td>
</tr>
<tr>
<td>Distribution Double Deadend with Riser</td>
<td>4-29-1</td>
</tr>
<tr>
<td>Distribution Double Deadend with Riser (Failed)</td>
<td>4-29-2</td>
</tr>
<tr>
<td>With Distribution Secondary</td>
<td>4-30-1</td>
</tr>
<tr>
<td>With Distribution Secondary (Failed)</td>
<td>4-30-2</td>
</tr>
</tbody>
</table>
For installation or removal of guys, anchors and bracing devices for overhead distribution poles.

Compatible Unit Coding for “G” and “A” Section

Guys
Guys have been coded according to size and type using a “G” prefix. Special purpose guys and attachments have also been appropriately coded. Single, double, overhead and sidewalk guys are available with individual Compatible Unit code numbers. Primary, secondary and pedestrian guy guards are also available.

Anchors
Standard anchors and anchor/rod combinations are coded with an “A” prefix. The numbers and letters in the code designate the sizes and descriptions of the anchoring devices.

Guy/Anchor Combinations
Guy and anchor combinations are available by combining the individual numbers to form one Compatible Unit number. This applies to all the recommended single and double down guy combinations with the various types of anchors.

Example: Compatible Unit no. **G5 A108**
- G5 = one 5/16” down guy with guy guard; A108 = one 10” anchor with 8 ft. rod

Example: Compatible Unit no. **G3 5 A108**
- G3 = top guy with guy guard, one 3/8” and one 5/16” down guy with guy guard; 5 = bottom guy; A108 = one 10” anchor with 8 ft. rod

<table>
<thead>
<tr>
<th>Compatible Unit</th>
<th>Available Guy & Anchor Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG3</td>
<td>A108</td>
</tr>
<tr>
<td>GW</td>
<td>A108</td>
</tr>
<tr>
<td>GW2</td>
<td>A108</td>
</tr>
<tr>
<td>G5</td>
<td>A108</td>
</tr>
<tr>
<td>G3</td>
<td>A108</td>
</tr>
<tr>
<td>G7</td>
<td>A108 A120 AG AR</td>
</tr>
<tr>
<td>G55</td>
<td>A108</td>
</tr>
<tr>
<td>G53</td>
<td>A108 A120 AG AR</td>
</tr>
<tr>
<td>G57</td>
<td>A108 A120 AG AR</td>
</tr>
<tr>
<td>G35</td>
<td>A108 A120 AG AR</td>
</tr>
<tr>
<td>G33</td>
<td>A108 A120 AG AR</td>
</tr>
<tr>
<td>G37</td>
<td>A108 A120 AR</td>
</tr>
<tr>
<td>G75</td>
<td>A108 A120 AG AR</td>
</tr>
<tr>
<td>G73</td>
<td>A108 A120 AR</td>
</tr>
<tr>
<td>G3H</td>
<td>A120 AR</td>
</tr>
<tr>
<td>G7H</td>
<td>A120 AR</td>
</tr>
</tbody>
</table>
Special Pole Bracing
Special types of pole bracing are provided in this section and have a "G" prefix. Tile pole foundations, butt plate bracing, pole key bracing, push pole bracing, temporary pole bracing and stub pole bracing have been assigned Compatible Unit numbers to allow a variety of pole bracing applications. The numbers are explained in detail on the standard drawings.

Grid Sketch Application
Guy, anchor and pole bracing codes are to be entered in the Miscellaneous section of the grid sketch (lines 13 thru 18) under the point number which represents the pole they are to be installed on.
POLE GUying AND BRACING

SIDEWALK GUying

NOTE:

THIS TYPE OF GUY SHOULD NOT BE USED IF CONVENTIONAL DOWN GUY CAN BE INSTALLED.

BILL OF MATERIAL

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>STOCK CODE</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connector, vise, 2-#6 sol to 2-#4 str</td>
<td>50286858</td>
<td>GW 1 GW2 2</td>
</tr>
<tr>
<td>2</td>
<td>Bolt, Machine, 3/4"x 14"</td>
<td>50287754*</td>
<td>GW 1 GW2 2</td>
</tr>
<tr>
<td>3</td>
<td>Clamp, Guy, Automatic, long bail</td>
<td>5028520</td>
<td>GW 0 GW2 1</td>
</tr>
<tr>
<td>4</td>
<td>Clamp, Guy, Automatic, 5/16", short ball</td>
<td>5028510*</td>
<td>GW 1 GW2 1</td>
</tr>
<tr>
<td>5</td>
<td>Clamp, Guy, Sidewalk, Queen Post Fitting</td>
<td>5028525</td>
<td>GW 1 GW2 1</td>
</tr>
<tr>
<td>6</td>
<td>Flange, Pole, Sidewalk Guy</td>
<td>5028616</td>
<td>GW 1 GW2 1</td>
</tr>
<tr>
<td>7</td>
<td>Guard, Guy, 8"</td>
<td>5028620</td>
<td>GW 1 GW2 1</td>
</tr>
<tr>
<td>8</td>
<td>Hook, Guy, 3/4" Bolt</td>
<td>5028632</td>
<td>GW 1 GW2 2</td>
</tr>
<tr>
<td>9</td>
<td>Pipe, galvanized, 2" x 5'</td>
<td>5028648</td>
<td>GW 1 GW2 1</td>
</tr>
<tr>
<td>10</td>
<td>Clip, Wire Rope, 5/16" Wire</td>
<td>5028660</td>
<td>GW 2 GW2 2</td>
</tr>
<tr>
<td>11</td>
<td>Screw, Leg, 1/2" x 4"</td>
<td>5028600</td>
<td>GW 3 GW2 3</td>
</tr>
<tr>
<td>12</td>
<td>Washer, Double Coil Lock, 3/4"</td>
<td>5028689*</td>
<td>GW 1 GW2 2</td>
</tr>
<tr>
<td>13</td>
<td>Washer, Square, 3/4"</td>
<td>5028163*</td>
<td>GW 1 GW2 2</td>
</tr>
<tr>
<td>14</td>
<td>Wire, Steel, Coll, 6/16" S.M.</td>
<td>5033873</td>
<td>GW 50' GW2 100'</td>
</tr>
<tr>
<td>15</td>
<td>Wire, Copper, bare, #8</td>
<td>6033845</td>
<td>GW 1 GW2 1</td>
</tr>
<tr>
<td>16</td>
<td>Connector, comp, copper, 2 sol-2 str. to 8-sol-4 str.</td>
<td>5033833</td>
<td>GW 1 GW2 2</td>
</tr>
<tr>
<td>17</td>
<td>Grip, Guy, 5/16"</td>
<td>5028617</td>
<td>GW 1 GW2 2</td>
</tr>
</tbody>
</table>

* Imprint Bin Item

REV: CHANGED GUY HOOK MATERIAL, CHANGED STOCK CODES.

ISSUE DATE: 09/30/71

REV. DATE: 06/02/13

APPROVAL: B. PRIEST

Overhead Distribution Construction Standards

SRP PROPRIETARY MATERIAL

POLE GUying AND BRACING SIDEWALK GUying

4-3-1
POLE GUYING AND BRACING

DOWN GUYING

SPACING REQ'D IF 2 GUY RODS ARE INSTALLED

CLAMP, AUTOMATIC

GRIP, WRAP

REV. REMOVED BONDING CLAMP
(TWO) 5/16" DOWN GUYS WITH GUY GUARD
(ONE) 5/16" AND (ONE) 3/8" DOWN GUY WITH GUY GUARD
(ONE) 5/16" AND (ONE) 7/16" DOWN GUY WITH GUY GUARD
(ONE) 3/8" AND (ONE) 6/16" DOWN GUY WITH GUY GUARD
(TWO) 3/8" DOWN GUYS WITH GUY GUARD
(ONE) 3/8" AND (ONE) 7/16" DOWN GUY WITH GUY GUARD
(ONE) 7/16" AND (ONE) 3/8" DOWN GUY WITH GUY GUARD
(ONE) 7/16" AND (ONE) 5/16" DOWN GUY WITH GUY GUARD

DESIGNATES BOTTOM GUY
DESIGNATES TOP GUY

Overhead Distribution Construction Standards

REV. REMOVED BONDING CLAMPS

POLE GUYING AND BRACING
DOUBLE DOWN GUETING

ISSUE DATE: 09/30/71
REV. DATE: 05/17/12
APPROVAL: B. PRIEST

4-5-1
POLE GUYING AND BRACING
OVERHEAD GUYING

GUYED POLE

STUB POLE

5/16" OVERHEAD GUY
3/8" OVERHEAD GUY
7/16" OVERHEAD GUY

8" MIN.
"IF ATTACHMENT HEIGHT IS GREATER THAN 19'- 6"
THIS TENSION MUST BE REDUCED.
CONTACT ELECTRIC SYSTEM PLANNING & ENGINEERING
FOR ASSISTANCE IF THIS TENSION MUST BE
EXCEEDED, OR ATTACHMENT HEIGHT IS GREATER.

SEE STRUCTURE STANDARD
AS SPECIFIED

"MAXIMUM TENSION 2500 LBS.
5/16" OVERHEAD GUY

30' CLASS 1
(CUT 10' OFF TOP OF
A 40' CLASS 1)

HOLE SIZE AND
BACKFILL MATERIAL
ARE THE SAME AS GGB

Overhead Distribution
Construction Standards

POLE GUying AND BRACING
OVERHEAD GUY TO
SELF-SUPPORTING STUB POLE

REV. REFORMAT

ISSUE DATE: 06/4/09
REV. DATE: 05/20/11
APPROVAL: B.PRIEST

8612E217.DGN
POLE GUING AND BRACING
TEMPORARY TANGENT 12KV POLE BRACE
NEAR TRENCH

Notes:
1. Do not use where peak wind gusts exceed 30 MPH.
2. Brace is to be used only for conditions defined on page 4-20 of the Excavation Safety Resource Manual, 1993 revision (limited time frame and specific tangent configuration).
3. Up to a 50' class one wood pole only placed at normal embedment.
4. This brace is not intended to support poles carrying transformers, switches, capacitors, etc.
5. The brace will not support poles embedded in Type C (soft, saturated or submerged) soils.
6. If there are questions concerning the use of this brace contact Electric System Engineering, Policies, Procedures and Standards.
7. The parts are stocked at Division Tool Rooms.
8. 3 manhours of time are assigned.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>LENGTH</th>
<th>NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>POLE LINK BAND ASSEMBLY</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>VANG, VERTICAL, 3/8"</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>STEEL CLEVIS CONNECTION, 3" X 3/8"</td>
<td>3"</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>STEEL CLEVIS CONNECTION, 3" X 3/8"</td>
<td>12"</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>STEEL CLEVIS CONNECTION, 2" X 3/8"</td>
<td>8"</td>
<td>1</td>
</tr>
<tr>
<td>6A</td>
<td>STEEL PIPE, 2.5" DIA. SCH. 40</td>
<td>4'-0"</td>
<td>1</td>
</tr>
<tr>
<td>6B</td>
<td>STEEL PIPE, 2" DIA. SCH. 40</td>
<td>5'-0"</td>
<td>1</td>
</tr>
<tr>
<td>7A</td>
<td>STEEL PIPE, 2" DIA. SCH. 40</td>
<td>4'-0"</td>
<td>1</td>
</tr>
<tr>
<td>7B</td>
<td>STEEL PIPE, 2" DIA. SCH. 40</td>
<td>5'-0"</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>A325 BOLT, 3/4" DIA.</td>
<td>4"</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>STRUCTURAL TEE STEEL, WT 6 X 28.5</td>
<td>2'-6"</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>STRUCTURAL TEE STEEL, WT 6 X 28.5</td>
<td>3'-6"</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>STEEL PLATE, 5-1/2" X 1"</td>
<td>4.75"</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1" DIA. GADS</td>
<td>4'-6"</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>STEEL PIPE, 2" DIA. SCH. 80</td>
<td>6"</td>
<td>4</td>
</tr>
</tbody>
</table>

Overhead Distribution Construction Standards

REV. REFORMAT

POLE GUING AND BRACING
TEMPORARY TANGENT 12KV POLE BRACE
NEAR TRENCH

REV. DATE: 03/27/13
APPROVAL: B. PRIEST

ISSUE DATE: 09/06/00

SRP®
PROPRIETARY MATERIAL
NOTES:

1. THIS BUTT PLATE INSTALLATION FOR USE ON DISTRIBUTION POLES ONLY.
2. DRILL HOLE FOR THIS INSTALLATION WITH A 30" AUGER.
3. SECURE BUTT PLATE TO BUTT OF POLE WITH (3) 1/2" LAG SCREWS.
4. REMOVE COVERING FROM POLE GROUND.
FOR POLES WITH UNGUYED ANGLED SLACK SPANS OR ANY UNBALANCED LOAD
OR POLES SET IN LOOSE OR SWAMPY, MUDDY SOIL.
POLE SHOULD HAVE A 6 INCH RAKE OPPOSITE THE STRAIN OF CONDUCTOR.
This compatible unit includes labor only to hand dig a hole for a pole or anchor. This unit includes 4 manhours.
POLE GUYING AND BRACING
POLE KEY BRACING

NOTES:
1. GK1: TOP POLE KEY MAY BE USED ON EXISTING POLES FOR:
 - STRAIGHTENING LEANING POLES
 - NON-GUYED POLES WITH SLACK SPAN TAKE-OFFS
 - MINOR LINE ANGLE POLES
 - ALLEY ARM CONSTRUCTION
 - UNBALANCED SERVICE TAKE-OFFS
2. GK2: TOP AND BOTTOM POLE KEYS MAY BE USED FOR KEYING NEW POLE INSTALLATIONS WHERE GUYS ARE IMPractical.
3. GK3: BOTTOM POLE KEY MAY ONLY BE USED ON A NEW POLE IF INSTALLED IN CONCRETE SIDEWALK.
4. GK4: DRILL OVERSIZE HOLE (30" DIAMETER), CENTER POLE IN HOLE, BACKFILL WITH ONE SACK LMB (5075314). DO NOT APPLY LINE LOAD UNTIL 24 HOURS AFTER POURING LMB.
5. RAKE POLES AGAINST LINE TENSION (TYPICALLY 6°).
6. TAMp BACKFILL FIRMLY.
POLE GUING AND BRACING
PUSH POLE BRACING
NOTES:

1. TEMPORARY SUPPORT FOR EXCAVATION IN LOOSE SOIL ADJACENT TO POLE.

2. AS AN ALTERNATIVE TO USING GUY WIRE, ANCHOR MAY BE INSTALLED VERTICALLY AND BOLTED TO HORIZONTAL BRACE.

3. PLUG HOLES IN LINE POLE AFTER REMOVAL OF BRACING WITH PLUGS 5028908.

4. SINCE THESE ARE TEMPORARY INSTALLATIONS, ENTER BOTH THE CONSTRUCTION AND REMOVAL OF THE COMPATIBLE UNIT ON THE JOB ESTIMATE.

5. NORMAL LENGTH OF EXPOSED ROD IS 6". FOR TEMPORARY GUYING AND BRACING, MAXIMUM EXPOSED ANCHOR ROD OF 24" MAY BE USED.

(SEE NOTE 2)

(HEIGHT, AS REQUIRED)
NOTE:
1. SET STUB 4' TO 6' DEEP DEPENDING UPON SOIL CONDITIONS.
2. THIS STANDARD IS FLEXIBLE. ESTIMATORS MAY ADAPT DETAILS TO FIT THE SITUATION, AND CREWS ARE TO CUT THE STUB AS NECESSARY.
3. RESTRICT USAGE TO INSTALLATIONS WHERE PROTECTION IS NECESSARY.
FOR USE ON DEADENDS WITH GUY TENSION EXCEEDING 11,000 LBS.

NOTES:
1. LINK TYPE POLE BANDS ARE INCLUDED WITH THESE UNITS AND ARE SIZED FOR APPROXIMATELY 10 INCH DIAMETER. LINKS MAY BE REMOVED OR ADDITIONAL LINKS, STOCK NUMBER 5027576, MAY BE ADDED IF NEEDED.

2. DOWN GUYS WITH EPOXIGLASS STRAIN INSULATORS ARE TO BE USED WHEN THE GUY WIRE NEEDS PROTECTION FROM ACCIDENTAL CONTACT WITH ENERGIZED CONDUCTORS.

*AUTOMATIC GUY CLAMPS MAY BE SUBSTITUTED WHEN SPACE IS LIMITED.
POLE GUING AND BRACING
PRIMARY, SECONDARY AND PEDESTRIAN GUY GUARDS

NOTE:
PRIMARY GUY STRAIN INSULATOR AND SECONDARY GUY GUARD SHOULD BE PLACED SO THAT CONDUCTORS WILL PASS AS CLOSE TO MID-WAY AS POSSIBLE.

UNGROUND GUY
(SEE "UNGROUND INSULATED GUYS" PAGE 4-23-1)

MINIMUM HORIZONTAL TO INSULATOR IS 4.5" FOR 12KV SYSTEM. 7" FOR 22KV SYSTEM.

GROUNDED GUY

GUY HORIZONTAL CLEARANCE MUST BE MINIMUM 5" FROM CONDUCTOR. GUARD MARKER IS USED TO PROVIDE PHYSICAL PROTECTION WHEN CLEARANCE ≥ 6".

SECONDARY CONDUCTOR

SECONDARY GUY GUARD MAY BE USED ON ALL GUY SIZES.

GROUNDED GUY

PEDESTRIAN GUY GUARD MAY BE USED ON ALL GUY SIZES.

CUT GUY WIRE EXCESS AS SHORT AS POSSIBLE, BEND TO ALLOW GUARD TO COVER AS SHOWN.

Overhead Distribution Construction Standards

POLE GUING AND BRACING

PRIMARY, SECONDARY AND PEDESTRIAN GUY GUARDS

REV. REFORMAT

ISSUE DATE: 11/04/71

REV. DATE: 01/27/11

APPROVAL: B. PRIEST

4-17-1

8012E306.DGN

PROPRIETARY MATERIAL
ROCKS HELP KEY BACKFILL
TAMP BACKFILL WELL

TRENCHED HOLE
PREFERRED

ALTERNATE

TRENCH FOR ANCHOR ROD

GRADE

NORMALLY 45 DEG.

6" DIA. FOR 16" DISK
20" DIA. FOR 20" DISK

POLE GUYING AND BRACING
CORROSION RESISTANT ANCHOR AND ROD

NOTE: DISTANCE FROM ANCHOR STAKE LOCATION:
DIMENSION FOR 8' ANCHOR ROD = 5'
DIMENSION FOR 10' ANCHOR ROD = 5'-6"
Overhead Distribution Construction Standards

Pole Guying and Bracing

Temporary Installation Anchor and Rod

Notes:

1. Distance from anchor stake location
 - Dimension for 8 ft. anchor rod = 5'
 - Dimension for 10 ft. anchor rod = 6'-6"'

2. Expanding "Bust" anchor only for temporary guying and bracing installations.

3. Normal length of exposed rod is 6". For temporary guying and bracing, maximum exposed anchor rod of 24" may be used.

Drilled Hole Preferred

- See Note 3

- See Note 3

<table>
<thead>
<tr>
<th>Grade</th>
<th>Normally 46 deg.</th>
</tr>
</thead>
</table>

10" Dia. for 10" - 8 Way
12" Dia. for 12" - 4 Way

Rocks help key backfill tamp backfill well

Trenched Hole Alternate

- See Note 3

- See Note 3

| **Grade** | Normally 46 deg. |

- Trench for anchor rod

- Undercut

Notes:

1. Distance from anchor stake location
 - Dimension for 8 ft. anchor rod = 5'
 - Dimension for 10 ft. anchor rod = 6'-6"'

2. Expanding "Bust" anchor only for temporary guying and bracing installations.

3. Normal length of exposed rod is 6". For temporary guying and bracing, maximum exposed anchor rod of 24" may be used.

Steel Nut

- 3/4" Rod 5028831
- 1" Rod 5028832

Cathodic Plastic Sleeve

Anchor Rod

Expanding Anchor

Revision: Changed application from hand dig to temporary installation, revised notes.

Issue Date: 09/30/71

Rev. Date: 03/24/16

Approval: S. Duran

Sheet: 6512547.DGN

Revision: 4-19-1
5'-4" MIN.

LOG TO BEAR AGAINST UNDISTURBED EARTH

TAMP ALL BACKFILL

ANCHOR ROD MUST BE IN LINE WITH GUY

TRENCH FOR ANCHOR ROD

8" (MIN. DIA.) POLE CUT TO 5'-0" LENGTH

"A"

5'-6"

AL8 5' LOG ANCHOR WITH 8' ROD

"A"

5'-6"

NORMALLY 45 DEG.

LOG TO BEAR AGAINST UNDISTURBED EARTH

SECTION "A-A"

ISSUE DATE: 09/30/71
REV. DATE: 05/17/12
APPROVAL: B. PRIEST
POLE GUYING AND BRACING
GROUTED ROCK ANCHORS

1 TO 1 CONCRETE GROUT
FURNISHED BY C&M DEPT.

NORMALLY 45 DEG.

1" SQ. NUT

2 1/2" MIN. DIA.

16" MIN. FOR SOLID ROCK
30" MIN. FOR ROCK STRATA

THIS ANCHOR NORMALLY INSTALLED BY C&M DEPT.
DO NOT INSTALL ON ANY BOULDERS MEASURING LESS THAN FIVE FEET IN TWO DIRECTIONS AT RIGHT ANGLES TO EACH OTHER.

THIS ANCHOR NORMALLY INSTALLED BY C&M DEPT.

CONCRETE GROUT
Ungrounded (Insulated) Guys

1. Objectives
 This procedure and examples on the following pages will:
 Define guying
 Provide guidelines for the installation of ungrounded (insulated) guys

2. Responsibilities
 ESE will maintain program procedures (review NESC for changes), advise and train personnel who design and build facilities with guys and provide inspection services if requested by responsible divisions. The Responsible Divisions will assure that designs properly show how guys and guy insulators are used and where to install them. The line crews that construct the guying must be sure that the guys are properly grounded or if ungrounded the insulated sections are properly installed.

3. Definitions:
 A. Guy - a supporting member fastened between a fixed support and a pole to provide an opposing force to balance conductor tension(s) acting on the pole.
 B. Down guy - a down guy consists of a wire running from an attachment on a pole to a rod and anchor installed in the ground.
 C. Span or head guy - a span guy consists of a wire running from an attachment on a pole to an adjacent pole opposing the strain from the line conductors. Insulated guy rod - a device installed in a guy to maintain adequate electrical clearances, provide safe working space for linemen, reduce nuisance line tripping from guy contacts with line conductors and protect the public against possible exposure to an energized guy.

4. Grounding Guy Requirements
 All guys shall be effectively grounded unless insulated per item No. 5.
 To be effectively grounded, guys shall be electrically connected to one or more of the following:
 A. Grounded metallic supporting structure (grounded steel pole)
 B. An effective ground on a nonmetallic supporting structure (pole ground)
 C. A line conductor that has at least four (4) grounds in each mile of line (system neutral)
5. **Insulated Guy Rods**

All efforts to ground the guy wire must be exhausted prior to installation of the insulated guy section. When the guy to energized part clearance cannot be obtained, the insulated guy must comply with the following:

A. **Insulators shall be so placed that if the guy is broken below the insulator or any guy is contacted by an energized conductor or part, the voltage will not be transferred to other facilities on the structure(s) or below 8’ above ground.**

B. **Insulators shall be so placed that in case any guy sags down upon another, the insulators will not become ineffective.**

The placement of insulator(s) in an ungrounded guy is intended to protect the public against a possible exposure to an energized guy. The proper location of an insulator in an ungrounded guy may be determined as follows:

- **Down guy** - The horizontal plane defined by the lowest energized facility shall pass through the center or upper half of the lowest guy insulator. A facility is considered energized if it is at a service voltage (120 volts) or higher. A check shall be made to determine, under a broken guy condition (at anchor eye), guy hanging vertically, that requirements 5a and 5b are met.

- **Head guy** - Terminated to stub pole, no other electrical facilities adjacent/on the stub pole or between the guyed and stub pole: The horizontal plane defined by the lowest energized facility shall pass through the center or upper half of the lowest guy insulator. A check shall be made to determine, under a broken guy condition (at stub pole), guy hanging vertically, that requirements 5a and 5b are met.

- **Head guy** - Terminated to stub pole, with other electrical facilities adjacent/on the stub pole or between the guyed and stub pole: In addition to the above check, a check shall be made, under a broken guy condition (at the guyed pole), guy hanging vertically, that requirements 5.A. and 5.B. are met.
GROUNDING CONNECTION AT POLE BAND

GROUNDING CONNECTION AT GUY ATTACHMENT

GROUNDING CONNECTION AT NEUTRAL

ANY ENERGIZED CONDUCTOR

INSULATED GUY ROD

NOTE:
PRIMARY & SECONDARY GUY STRAIN INSULATOR SHOULD BE PLACED SO THAT CONDUCTORS WILL PASS AS CLOSE TO MID-WAY AS POSSIBLE.
CENTER OR UPPER HALF OF INSULATED ROD MUST BE IN HORIZONTAL PLANE PROJECTED FROM LIVE PART OF DEVICE.

IF SECONDARY IS ON THIS POLE THE ENTIRE GUY STRAND SHALL BE INSULATED ROD LEAVING ENOUGH WIRE FOR ADJUSTMENT.
No voltage transferred to other facilities on structures.

No voltage transferred below 8'.

Overhead Distribution
Construction Standards

POLE GUYING & BRACING
TRANSMISSION WITH DISTRIBUTION
UNDERBUILD WITH SPAN GUYS (FAILED)

ISSUE DATE: 10/15/97
REV. DATE: 01/27/11
APPROVAL: B. PRIEST
CENTER OR UPPER HALF OF INSULATED ROD MUST BE IN HORIZONTAL PLANE PROJECTED FROM LIVE PART OF DEVICE.
NO VOLTAGE TRANSFERRED TO OTHER FACILITIES ON STRUCTURES.

NO VOLTAGE TRANSFERRED BELOW 8'.

> 8'
CENTER OR UPPER HALF OF INSULATED ROD MUST BE IN HORIZONTAL PLANE PROJECTED FROM LIVE PART OF DEVICE.
NO VOLTAGE TRANSFERRED TO OTHER FACILITIES ON STRUCTURES.

NO VOLTAGE TRANSFERRED BELOW 8'.

POLE GUying & BRACING
TRANSMISSION DEAD END WITH DISTRIBUTION
UNDERBUILD CONTINUING ON (FAILED)
CENTER OR UPPER HALF OF INSULATED ROD MUST BE IN HORIZONTAL PLANE PROJECTED FROM LIVE PART OF DEVICE.
NO VOLTAGE TRANSFERRED TO OTHER FACILITIES ON STRUCTURES.

NO VOLTAGE TRANSFERRED BELOW 8'.

> 8'

REG. DATE: 10/27/13

APPROVAL: B. PRIEST

ISSUE DATE: 10/13/97

POLE GUING & BRACING DISTRIBUTION, VERTICAL CONSTRUCTION (FAILED)
CENTER OR UPPER HALF OF INSULATED ROD MUST BE IN HORIZONTAL PLANE PROJECTED FROM LIVE PART OF DEVICE.
NO VOLTAGE TRANSFERRED TO OTHER FACILITIES ON STRUCTURES.

NO VOLTAGE TRANSFERRED BELOW 8'.

> 8'
Center or upper half of insulated rod must be in horizontal plane projected from live part of device.
NO VOLTAGE TRANSFERRED TO OTHER FACILITIES ON STRUCTURES.

NO VOLTAGE TRANSFERRED BELOW 8'.