PART 1 - GENERAL

1.1 SUMMARY
A. This Section includes packaged, outdoor, central-station air-handling units (rooftop units) with the following components and accessories:

1. Direct-expansion cooling.
2. Electric-heating coils.
4. Economizer outdoor- and return-air damper section.
5. Integral, space temperature controls.
6. Roof curbs.

1.2 DEFINITIONS
A. Outdoor-Air Refrigerant Coil: Refrigerant coil in the outdoor-air stream to reject heat during cooling operations and to absorb heat during heating operations. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.

B. Outdoor-Air Refrigerant-Coil Fan: The outdoor-air refrigerant-coil fan in RTUs. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.

C. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, outdoor, central-station air-handling units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.

D. Supply-Air Fan: The fan providing supply-air to conditioned space. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.

E. Supply-Air Refrigerant Coil: Refrigerant coil in the supply-air stream to absorb heat (provide cooling) during cooling operations and to reject heat (provide heating) during heating operations. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.

F. VVT: Variable-air volume and temperature.

1.3 SUBMITTALS
A. Product Data: Include manufacturer's technical data for each RTU, including rated capacities, dimensions, required clearances, characteristics, furnished specialties, and accessories.
B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

C. Field quality-control test reports.

D. Operation and maintenance data.

1.4 QUALITY ASSURANCE

A. ASHRAE Compliance:

1. Comply with ASHRAE 15 for refrigerant system safety.
2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.
3. Comply with applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."
4. Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

B. NFPA Compliance: Comply with NFPA 90A and NFPA 90B.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.5 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to replace components of RTUs that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Compressors & Gas Furnace Heat Exchangers: Manufacturer's standard, but not less than five years from date of Substantial Completion.
2. Warranty Period for Solid-State Ignition Modules: Manufacturer's standard, but not less than three years from date of Substantial Completion.
3. Warranty Period for Control Boards: Manufacturer's standard, but not less than three years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Engineered Air.
 2. Lennox Industries Inc.
 3. Trane; American Standard Companies, Inc.
 4. YORK International Corporation.

2.2 CASING

A. General Fabrication Requirements for Casings: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.

B. Exterior Casing Material: Galvanized steel with factory-painted finish, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.
 1. Exterior Casing Thickness: minimum 0.052 inch (18ga) thick.

C. Inner Casing Fabrication Requirements:
 1. Inside Casing: Galvanized steel, minimum 0.034 inch (21ga).

D. Casing Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 1. Materials: ASTM C 1071, Type I.
 2. Thickness: 1 inch.
 3. Liner materials shall have air-stream surface coated with an erosion- and temperature-resistant coating or faced with a plain or coated fibrous mat or fabric.

E. Condensate Drain Pans: Formed sections of stainless-steel sheet, a minimum of 2 inches deep, and complying with ASHRAE 62.1.
 1. Double-Wall Construction: Fill space between walls with foam insulation and seal moisture tight.
 2. Drain Connections: Threaded nipple.
 3. Pan-Top Surface Coating: Corrosion-resistant compound.

2.3 FANS

A. Direct-Driven Supply-Air Fans: Double width, [forward curved] [backward inclined], centrifugal; with permanently lubricated, multispeed motor resiliently mounted in the fan inlet. Aluminum or painted-steel wheels, and galvanized- or painted-steel fan scrolls.
B. Belt-Driven Supply-Air Fans: Double width, forward curved, centrifugal; with permanently lubricated, single-speed motor installed on an adjustable fan base resiliently mounted in the casing. Aluminum or painted-steel wheels, and galvanized- or painted-steel fan scrolls.

C. Condenser-Coil Fan: Propeller, mounted on shaft of permanently lubricated motor.

D. Relief-Air Fan: [Propeller] [Forward curved] [Backward inclined], shaft mounted on permanently lubricated motor.

E. Seismic Fabrication Requirements: Fabricate fan section, internal mounting frame and attachment to fans, fan housings, motors, casings, accessories, and other fan section components with reinforcement strong enough to withstand seismic forces defined in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment" when fan-mounted frame and RTU-mounted frame are anchored to building structure.

F. Fan Motor: Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."

2.4 COILS

A. Supply-Air Refrigerant Coil:
 1. [Aluminum] [Copper]-plate fin and seamless copper tube in steel casing with equalizing-type vertical distributor.
 2. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan.

B. Outdoor-Air Refrigerant Coil:
 1. [Aluminum] [Copper]-plate fin and seamless copper tube in steel casing with equalizing-type vertical distributor.
 2. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan.

C. Electric-Resistance Heating:
 1. Open Heating Elements: Resistance wire of 80 percent nickel and 20 percent chromium, supported and insulated by floating ceramic bushings recessed into casing openings, fastened to supporting brackets, and mounted in galvanized-steel frame. Terminate elements in stainless-steel machine-staked terminals secured with stainless-steel hardware.
 2. Overtemperature Protection: Disk-type, automatically reset, thermal-cutout, safety device; serviceable through terminal box.
 3. Overcurrent Protection: Manual-reset thermal cutouts, factory wired in each heater stage.
 4. Control Panel: Unit mounted with disconnecting means and overcurrent protection. Include the following controls:
2.5 REFRIGERANT CIRCUIT COMPONENTS

A. Number of Refrigerant Circuits: One

B. Compressor: Hermetic/semihermetic: reciprocating, scroll, or screw, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief.

C. Refrigeration Specialties:
 1. Refrigerant: R-407C or R-410A.
 2. Expansion valve with replaceable thermostatic element.
 3. Refrigerant filter/dryer.
 5. Automatic-reset low-pressure safety switch.
 8. Brass service valves installed in compressor suction and liquid lines.

2.6 AIR FILTRATION

A. Minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.

 1. Glass Fiber: Minimum [80] percent arrestance, and MERV 7
 2. Pleated: Minimum 90 percent arrestance, and MERV 7

2.7 GAS FURNACE

A. Description: Factory assembled, piped, and wired; complying with ANSI Z21.47 and NFPA 54.

 1. CSA Approval: Designed and certified by and bearing label of CSA.

B. Burners: Stainless steel.

 1. Fuel: Natural gas.
 2. Ignition: Electronically controlled electric spark or hot-surface igniter with flame sensor.

C. Heat-Exchanger and Drain Pan: Stainless steel.

D. Venting: Gravity vented.
E. **Power Vent:** Integral, motorized centrifugal fan interlocked with gas valve.

F. **Safety Controls:**

 1. **Gas Control Valve:** [Single stage] [Two stage] [Modulating].
 2. **Gas Train:** Single-body, regulated, redundant, 24-V ac gas valve assembly containing pilot solenoid valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff.

2.8 **DAMPERS**

A. **Outdoor-Air Damper:** Linked damper blades, for 0 to 25 percent outdoor air, with [manual] [motorized] damper filter.

B. **Outdoor- and Return-Air Mixing Dampers:** Parallel- or opposed-blade galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet. Connect operating rods with common linkage and interconnect linkages so dampers operate simultaneously.

 1. **Damper Motor:** Modulating with adjustable minimum position.
 2. **Relief-Air Damper:** Gravity actuated or motorized, as required by ASHRAE/IESNA 90.1, with bird screen and hood.

2.9 **ELECTRICAL POWER CONNECTION**

A. **Provide for single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.**

2.10 **CONTROLS**

A. **Control equipment and sequence of operation are specified in Section 230900 "Instrumentation and Control for HVAC."**

B. **Basic Unit Controls:**

 1. Control-voltage transformer.
 2. Wall-Mounted Thermostat: Honeywell VIsionPRO 8000

C. **Electronic Controller:**

 1. Controller shall have volatile-memory backup.
 2. Safety Control Operation:

 a. **Smoke Detectors:** Stop fan and close outdoor-air damper if smoke is detected. Provide additional contacts for alarm interface to fire alarm control panel.
b. Firestats: Stop fan and close outdoor-air damper if air greater than 130 deg F enters unit. Provide additional contacts for alarm interface to fire alarm control panel.

c. Fire Alarm Control Panel Interface: Provide control interface to coordinate with operating sequence described in Section 283111 "Digital, Addressable Fire-Alarm System" and Section 283112 "Zoned (DC Loop) Fire-Alarm System."

3. Scheduled Operation: Occupied and unoccupied periods on seven-day clock with a minimum of two programmable periods per day.

4. Unoccupied Period:
 a. Heating Setback: 10 deg F.
 c. Override Operation: Two hours.

5. Supply Fan Operation:
 a. Occupied Periods: Run fan continuously.
 b. Unoccupied Periods: Cycle fan to maintain setback temperature.

6. Refrigerant Circuit Operation:
 a. Occupied Periods: Cycle or stage compressors to match compressor output to cooling load to maintain room temperature. Cycle condenser fans to maintain maximum hot-gas pressure.
 b. Unoccupied Periods: Compressors off.

7. Gas Furnace Operation:
 a. Occupied Periods: Modulate or cycle burner to maintain room temperature.
 b. Unoccupied Periods: Cycle burner to maintain setback temperature.

8. Electric-Heating-Coil Operation:
 a. Occupied Periods: Cycle coil to maintain room temperature.
 b. Unoccupied Periods: Energize coil to maintain setback temperature.
 c. Operate supplemental electric heating coil with compressor for heating with outdoor temperature below 25 deg F.

9. Fixed Minimum Outdoor-Air Damper Operation:
 a. Occupied Periods: Open to 10 percent.
 b. Unoccupied Periods: Close the outdoor-air damper.

10. Economizer Outdoor-Air Damper Operation:
 a. Occupied Periods: Open to 10 percent fixed minimum intake, and maximum 100 percent of the fan capacity to comply with ASHRAE Cycle II. Controller shall permit air-side economizer operation when outdoor air is
less than 60 deg F. Use [outdoor-air enthalpy] [mixed-air temperature and select between outdoor-air and return-air enthalpy] to adjust mixing dampers During economizer cycle operation, lock out cooling.

b. Unoccupied Periods: Close outdoor-air damper and open return-air damper.

11. VVT Relays:
 a. Provide heating- and cooling-mode changeover relays compatible with VVT terminal control system required in Section 233600 "Air Terminal Units" and Section 230900 "Instrumentation and Control for HVAC."

D. Interface Requirements for HVAC Instrumentation and Control System:
 1. Interface relay for scheduled operation.
 2. Interface relay to provide indication of fault at the central workstation and diagnostic code storage.
 3. Provide BACnet compatible interface for central HVAC control workstation for the following:
 a. Adjusting set points.
 b. Monitoring supply fan start, stop, and operation.
 c. Inquiring data to include outdoor-air damper position, supply- and room-air temperature and humidity.
 d. Monitoring occupied and unoccupied operations.

2.11 ACCESSORIES
 A. Electric heater with integral thermostat maintains minimum 50 deg F temperature in gas burner compartment.
 B. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required
 C. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.
 D. Coil guards of painted, galvanized-steel wire.
 E. Hail guards of galvanized steel, painted to match casing.
 F. Concentric diffuser with white louvers and polished aluminum return grilles, insulated diffuser box with mounting flanges, and interior transition.

2.12 ROOF CURBS
 A. Roof curbs with vibration isolators and wind or seismic restraints are specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."
B. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.
 1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 a. Materials: ASTM C 1071, Type I or II.
 b. Thickness: 1-1/2 inches.

C. Wind and Seismic Restraints: Metal brackets compatible with the curb and casing, painted to match RTU, used to anchor unit to the curb, and designed for loads at Project site. Comply with requirements in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment" for wind-load requirements.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Roof Curb: Install on roof structure or concrete base, level and secure. Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 077200 "Roof Accessories." Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.

B. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure RTUs to structural support with anchor bolts.

C. Install wind and seismic restraints according to manufacturer's written instructions.

D. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or area drain.

E. Duct installation requirements are specified in other HVAC Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements:
 1. Install ducts to termination at top of roof curb.
 2. Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
 3. Connect supply ducts to RTUs with flexible duct connectors specified in Section 233300 "Air Duct Accessories."
 4. Install return-air duct continuously through roof structure.
 5. Install normal-weight, 3000-psi, compressive strength (28-day) concrete mix inside roof curb, 4 inches thick. Concrete, formwork, and reinforcement are specified with concrete.

3.2 QUALITY CONTROL

A. Complete the manufacturer's installation and startup checklists and resolve all discrepancies.
B. Provide the Commission Agent and SRP PM with the completed checklists/test results.

3.3 TRAINING

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain units.

END OF SECTION