PART 1: GENERAL

1.1 VARIABLE AIR VOLUME - AHU (typical of 1)

Run Conditions - Continuous:
The unit shall run continuously.

Emergency Shutdown:
The unit shall shut down and generate an alarm upon receiving an emergency shutdown signal.

Freeze Protection:
The unit shall shut down and generate an alarm upon receiving a freeze stat status.

High Static Shutdown:
The unit shall shut down and generate an alarm upon receiving an high static shutdown signal.

Supply Air Smoke Detection:
The unit shall shut down and generate an alarm upon receiving a supply air smoke detector status.

Supply Fan:
The supply fan shall run anytime the unit is commanded to run, unless shutdown on safeties. To prevent short cycling, the supply fan shall have a user definable (adj.) minimum runtime.

Alarms shall be provided as follows:

- Supply Fan Failure: Commanded on, but the status is off.
- Supply Fan in Hand: Commanded off, but the status is on.
- Supply Fan Runtime Exceeded: Status runtime exceeds a user definable limit (adj.).

Supply Air Duct Static Pressure Control:
The controller shall measure duct static pressure and shall modulate the supply fan VFD speed to maintain a duct static pressure setpoint of 1.5in H2O (adj.). The supply fan VFD speed shall not drop below 30% (adj.).

Alarms shall be provided as follows:

- High Supply Air Static Pressure: If the supply air static pressure is 25% (adj.) greater than setpoint.
- Low Supply Air Static Pressure: If the supply air static pressure is 25% (adj.) less than setpoint.
- Supply Fan VFD Fault.

Return Fan:
The return fan shall run whenever the supply fan runs.

Alarms shall be provided as follows:

- Return Fan Failure: Commanded on, but the status is off.
- Return Fan in Hand: Commanded off, but the status is on.
• Return Fan Runtime Exceeded: Status runtime exceeds a user definable limit (adj.).
• Return Fan VFD Fault.

Building Static Pressure Control:
The controller shall measure building static pressure and modulate the return fan VFD speed to maintain a building static pressure setpoint of 0.05in H₂O (adj.). The return fan VFD speed shall not drop below 20% (adj.).

Alarms shall be provided as follows:

• High Building Static Pressure: If the building air static pressure is 25% (adj.) greater than setpoint.
• Low Building Static Pressure: If the building air static pressure is 25% (adj.) less than setpoint.

Energy Recovery - Run-Around Loop Coils:
The controller shall run the run-around loop pump and modulate the run-around loop mixing valve for energy recovery as follows.

Cooling Recovery Mode:
The run-around loop pump shall run continuously. The controller shall measure the run-around loop coil discharge air temperature (downstream of the outside air coil) and modulate the run-around loop mixing valve to maintain a setpoint 2°F (adj.) less than the unit supply air temperature setpoint. The run-around loop shall run for cool recovery whenever:

• Unit return air temperature is 5°F (adj.) or more below the outside air temperature.
• AND the unit is in a cooling mode.
• AND the economizer (if present) is off.
• AND the supply fan is on.

Heating Recovery Mode:
The run-around loop pump shall run continuously. The controller shall measure the run-around loop coil discharge air temperature (downstream of the outside air coil) and modulate the run-around loop mixing valve to maintain a setpoint 2°F (adj.) greater than the unit supply air temperature setpoint. The run-around loop shall run for heat recovery whenever:

Unit return air temperature is 5°F (adj.) or more above the outside air temperature.
AND the unit is in a heating mode.
AND the economizer (if present) is off.
AND the supply fan is on.

Frost Protection:
The run-around loop pump shall run and the run-around loop mixing valve shall close to 0% (adj.) in order to circulate water through the run-around loop exhaust air coil whenever:

• Run-around loop temperature drops below 33°F (adj.)
• OR the exhaust air temperature drops below 30°F (adj.).

Alarms shall be provided as follows:

• Run-Around Loop Pump Failure: Commanded on, but the status is off.
• Run-Around Loop Pump in Hand: Commanded off, but the status is on.
• Run-Around Loop Pump Runtime Exceeded: Status runtime exceeds a user definable limit (adj.).

Supply Air Temperature Setpoint - Optimized:
The controller shall monitor the supply air temperature and shall maintain a supply air temperature setpoint reset based on zone cooling and heating requirements.

The supply air temperature setpoint shall be reset for cooling based on zone cooling requirements as follows:

• The initial supply air temperature setpoint shall be 55°F (adj.).
• As cooling demand increases, the setpoint shall incrementally reset down to a minimum of 53°F (adj.).
• As cooling demand decreases, the setpoint shall incrementally reset up to a maximum of 72°F (adj.).

If more zones need heating than cooling, then the supply air temperature setpoint shall be reset for heating as follows:

• The initial supply air temperature setpoint shall be 82°F (adj.).
• As heating demand increases, the setpoint shall incrementally reset up to a maximum of 85°F (adj.).
• As heating demand decreases, the setpoint shall incrementally reset down to a minimum of 72°F (adj.).

Cooling Coil Valve:
The controller shall measure the supply air temperature and modulate the cooling coil valve to maintain its cooling setpoint.

The cooling shall be enabled whenever:

• Outside air temperature is greater than 60°F (adj.).
• AND the economizer (if present) is disabled or fully open.
• AND the supply fan status is on.
• AND the heating (if present) is not active.

The cooling coil valve shall open to 50% (adj.) whenever the freezestat (if present) is on.

Alarms shall be provided as follows:

• High Supply Air Temp: If the supply air temperature is 5°F (adj.) greater than setpoint.

Heating Coil Valve:
The controller shall measure the supply air temperature and modulate the heating coil valve to maintain its heating setpoint.

The heating shall be enabled whenever:

• Outside air temperature is less than 65°F (adj.).
• AND the supply fan status is on.
• AND the cooling (if present) is not active.
The heating coil valve shall open whenever:

- Supply air temperature drops from 40°F to 35°F (adj.).
- OR the freezestat (if present) is on.

Alarms shall be provided as follows:

- Low Supply Air Temp: If the supply air temperature is 5°F (adj.) less than setpoint.

Economizer:
The controller shall measure the mixed air temperature and modulate the economizer dampers in sequence to maintain a setpoint 2°F (adj.) less than the supply air temperature setpoint. The outside air dampers shall maintain a minimum adjustable position of 20% (adj.) open whenever occupied.

The economizer shall be enabled whenever:

- Outside air temperature is less than 65°F (adj.).
- AND the outside air temperature is less than the return air temperature.
- AND the supply fan status is on.

The economizer shall close whenever:

- Mixed air temperature drops from 40°F to 35°F (adj.).
- OR the freezestat (if present) is on.
- OR on loss of supply fan status.

The outside and exhaust air dampers shall close and the return air damper shall open when the unit is off. If Optimal Start Up is available the mixed air damper shall operate as described in the occupied mode except that the outside air damper shall modulate to fully closed.

Minimum Outside Air Ventilation - Fixed Percentage:
The outside air dampers shall maintain a minimum adjustable position during building occupied hours and be closed during unoccupied hours.

Mixed Air Temperature:
The controller shall monitor the mixed air temperature and use as required for economizer control (if present) or preheating control (if present).

Alarms shall be provided as follows:

- High Mixed Air Temp: If the mixed air temperature is greater than 90°F (adj.).
- Low Mixed Air Temp: If the mixed air temperature is less than 45°F (adj.).

Return Air Temperature:
The controller shall monitor the return air temperature and use as required for setpoint control or economizer control (if present).

Alarms shall be provided as follows:

- High Return Air Temp: If the return air temperature is greater than 90°F (adj.).
• Low Return Air Temp: If the return air temperature is less than 45°F (adj.).

Supply Air Temperature:
The controller shall monitor the supply air temperature.

Alarms shall be provided as follows:

• High Supply Air Temp: If the supply air temperature is greater than 120°F (adj.).
• Low Supply Air Temp: If the supply air temperature is less than 45°F (adj.).

<table>
<thead>
<tr>
<th>Hardware Points</th>
<th>Software Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Name</td>
<td>AI</td>
</tr>
<tr>
<td>Supply Air Static Pressure</td>
<td>x</td>
</tr>
<tr>
<td>Building Static Pressure</td>
<td>x</td>
</tr>
<tr>
<td>Run-Around Loop Coil Discharge Air Temp</td>
<td>x</td>
</tr>
<tr>
<td>Outside Air Temp</td>
<td>x</td>
</tr>
<tr>
<td>Exhaust Air Temp</td>
<td>x</td>
</tr>
<tr>
<td>Run-Around Loop Temp</td>
<td>x</td>
</tr>
<tr>
<td>Mixed Air Temp</td>
<td>x</td>
</tr>
<tr>
<td>Return Air Temp</td>
<td>x</td>
</tr>
<tr>
<td>Supply Air Temp</td>
<td>x</td>
</tr>
<tr>
<td>Supply Fan VFD Speed</td>
<td>x</td>
</tr>
<tr>
<td>Return Fan VFD Speed</td>
<td>x</td>
</tr>
<tr>
<td>Run-Around Loop Mixing Valve</td>
<td>x</td>
</tr>
<tr>
<td>Cooling Valve</td>
<td>x</td>
</tr>
<tr>
<td>Heating Valve</td>
<td>x</td>
</tr>
<tr>
<td>Mixed Air Dampers</td>
<td>x</td>
</tr>
<tr>
<td>Freezestat</td>
<td>x</td>
</tr>
<tr>
<td>High Static Shutdown</td>
<td>x</td>
</tr>
<tr>
<td>Supply Air Smoke Detector</td>
<td>x</td>
</tr>
<tr>
<td>Supply Fan VFD Fault</td>
<td>x</td>
</tr>
<tr>
<td>Supply Fan Status</td>
<td>x</td>
</tr>
<tr>
<td>Return Fan VFD Fault</td>
<td>x</td>
</tr>
<tr>
<td>Return Fan Status</td>
<td>x</td>
</tr>
<tr>
<td>Run-Around Loop Pump Status</td>
<td>x</td>
</tr>
<tr>
<td>Supply Fan Start/Stop</td>
<td>x</td>
</tr>
<tr>
<td>Return Fan Start/Stop</td>
<td>x</td>
</tr>
</tbody>
</table>
Hardware Points

<table>
<thead>
<tr>
<th>Point Name</th>
<th>AI</th>
<th>AO</th>
<th>BI</th>
<th>BO</th>
<th>AV</th>
<th>BV</th>
<th>Sched</th>
<th>Trend</th>
<th>Alarm</th>
<th>Show On Graphic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run-Around Loop Pump Start/Stop</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Air Static Pressure Setpoint</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Static Pressure Setpoint</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Air Temp Setpoint</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economizer Mixed Air Temp Setpoint</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Shutdown</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Supply Air Static Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Supply Air Static Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Fan Failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Fan in Hand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Fan Runtime Exceeded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Building Static Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Building Static Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return Fan Failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return Fan in Hand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return Fan Runtime Exceeded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run-Around Loop Pump Failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run-Around Loop Pump in Hand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run-Around Loop Pump Runtime Exceeded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Supply Air Temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Supply Air Temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Mixed Air Temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Mixed Air Temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Return Air Temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Return Air Temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Supply Air Temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Supply Air Temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>28</td>
<td>28</td>
<td>30</td>
</tr>
</tbody>
</table>

Total Hardware (26) Total Software (61)
1.2 POINT SUMMARY

<table>
<thead>
<tr>
<th>Equipment Name</th>
<th>Qty</th>
<th>AI</th>
<th>AO</th>
<th>BI</th>
<th>BO</th>
<th>AV</th>
<th>BV</th>
<th>Sched</th>
<th>Trend</th>
<th>Alarm</th>
<th>Show On Graphic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable Air Volume - AHU</td>
<td>Each</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>28</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>(Typical of 1)</td>
<td>Total(x1)</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>28</td>
<td>28</td>
<td>30</td>
</tr>
</tbody>
</table>

| Project Totals | 9 | 6 | 8 | 3 | 4 | 1 | 0 | 28 | 28 | 30 | 30 |

Total Hardware (26) | Total Software (61)
APPENDIX A: Glossary of Terms

Terms used within the Specification Text:

- **Advanced Application Controller (AAC):**

 A fully programmable control module. This control module may be capable of some of the advanced features found in Building Controllers (storing trends, initiating read and write requests, etc.) but it does not serve as a master controller. Advanced Application Controllers may reside on either the Ethernet/IP backbone or on a subnet.

- **Application Specific Controller (ASC):**

 A pre-programmed control module which is intended for use in a specific application. ASCs may be configurable, in that the user can choose between various pre-programmed options, but it does not support full custom programming. ASCs are often used on terminal equipment such as VAV boxes or fan coil units. In many vendors' architectures ASCs do not store trends or schedules but instead rely upon a Building Controller to provide those functions.

- **BACnet/IP:**

 An approved BACnet network type which uses an Ethernet carrier and IP addressing.

- **BACnet MS/TP:**

 An approved BACnet network type which uses a Master-Slave Token Passing configuration. MS/TP networks are unique to BACnet and utilize EIA485 twisted pair topology running at 9600 to 76,800 bps.

- **BACnet over ARCNET:**

 An approved BACnet network type which uses an ARCNET (attached resource computer network) carrier. ARCNET is an industry standard that can utilize several speeds and wiring standards. The most common configuration used by BACnet controllers is an EIA485 twisted pair topology running at 156,000 bps.

- **Building Controller (BC):**

 A fully programmable control module which is capable of storing trends and schedules, serving as a router to devices on a subnet, and initiating read and write requests to other controllers. Typically this controller is located on the Ethernet/IP backbone of the BAS. In many vendors' architectures a Building Controller will serve as a master controller, storing schedules and trends for controllers on a subnet underneath the Building Controller.

- **Direct Digital Control (DDC):**
A control system in which a digital computer or microprocessor is directly connected to the valves, dampers, and other actuators which control the system, as opposed to indirectly controlling a system by resetting setpoints on an analog pneumatic or electronic controller.

- **PICS - Protocol Implementation Conformance Statement:**

 A written document, created by the manufacturer of a device, which identifies the particular options specified by BACnet that are implemented in the device.

- **Smart Actuator (SA):**

 An actuator which is controlled by a network connection rather than a binary or analog signal. (0-10v, 4-20mA, relay, etc.)

- **Smart Sensor (SS):**

 A sensor which provides information to the BAS via network connection rather than a binary or analog signal. (0-10000 ohm, 4-20mA, dry contact, etc.)

- **Web services:**

 Web services are a standard method of exchanging data between computer systems using the XML (extensible markup language) and SOAP (simple object access protocol) standards. Web services can be used at any level within a Building Automation System (BAS), but most commonly they are used to transfer data between BAS using different protocols or between a BAS and a non-BAS system such as a tenant billing system or a utility management system.

Terms used within the Sequences of Operation:

- **adj.**

 Adjustable by the end user, through the supplied user interface.

- **AI, AO, etc. (Column Headings on Points List)**

 - **AI** = Analog Input. A physical input to the control module.
 - **AO** = Analog Output. A physical output from the control module.
 - **AV** = Analog Value. An intermediate (software) point that may be editable or read-only. Editable AVs are typically used to allow the user to set a fixed control parameter, such as a setpoint. Read Only AVs are typically used to display the status of a control operation.
 - **BI** = Binary Input. A physical input to the control module.
 - **BO** = Binary Output. A physical output from the control module.
 - **BV** = Binary Value. An intermediate (software) point that may be editable or read-only. Editable BVs are typically used to allow the user to set a fixed control parameter, such as a setpoint. Read Only BVs are typically used to display the status of a control operation.
 - **Sched** = Schedule. The control algorithm for this equipment shall include a user editable schedule.
 - **Trend**. The control system shall be configured to collect and display a trend log of this object. The trending interval shall be no less than one sample every 5 minutes. (Change of Value trending, where a sample is taken every time the value changes by more than a user-defined minimum, is an acceptable alternative.)
Alarm. The control system shall be configured to generate an alarm when this object exceeds user definable limits, as described in the Sequence of Controls.

Note: If the specifications require use of the BACnet protocol, all of the above shall be provided as BACnet objects.

- **KW Demand Limiting:** *

 An energy management strategy that reduces energy consumption when a system's electric power meter exceeds an operator-defined threshold.

 When power consumption exceeds defined levels, the system automatically adjust setpoints, de-energizes low priority equipment, and takes other pre-programmed actions to avoid peak demand charges. As the demand drops, the system restores loads in a predetermined manner.

- **Occupant Override Switch, or Timed Local Override:**

 A control option that allows building occupants to override the programmed HVAC schedule for a limited period of time.

 When the override time expires, the zone returns to its unoccupied state.

- **Occupant Setpoint Adjustment:**

 A control option that allows building occupants to adjust - within limits set by the HVAC control system - the heating and cooling setpoints of selected zones. Typically the user interface for this function is built into the zone sensor.

- **Optimal Start-Up:** *

 A control strategy that automatically starts an HVAC system at the latest possible time yet ensures comfort conditions by the time the building becomes occupied.

 In a typical implementation, a controller measures the temperature of the zone and the outside air. Then, using design heating or cooling capacity at the design outside air temperature, the system computes how long a unit must run at maximum capacity to bring the zone temperature to its occupied setpoint.

 The optimal start algorithm often includes a self-learning feature to adjust for variations from design capacity.

 A distributed system must use Run on Request with Optimal Start. (See below.)

- **Requested, or Run on Request:** *

 A control strategy that optimizes the runtime of a source piece of equipment that supplies one or more receiving units - such as an air handler unit supplying zone terminal units with heating, cooling, ventilation, or similar service. Source equipment runs only when needed, not on a fixed schedule.
The source equipment runs when one or more receiving units request its services. An operator determines how many requests are required to start the source equipment.

For example, if all the zones in a building are unoccupied and the zone terminal units do not need heating or cooling, the AHU will shut down. However, if a zone becomes occupied or needs cooling, the terminal unit will send a run request to the AHU to initiate the start-up sequence. If this AHU depends on a central chiller, it can send a run request to the chiller.

The run on request algorithm also allows an operator to schedule occupancy for individual zones based on the needs of the occupants without having to adjust the schedules of related AHUs and chillers.

• Trim and Respond, or Setpoint Optimization: *

A control strategy that optimizes the setpoint of a source piece of equipment that supplies one or more receiving units - such as an air handler unit supplying zone terminal units with heating, cooling, ventilation, or similar service.

The source unit communicates with receiving units to determine heating, cooling, and other requirements, and then adjusts its setpoint.

For example, if all zones are comfortable and do not request cooling, the AHU will gradually increase (trim) its supply air setpoint. When a zone requests cooling, the AHU responds by dropping its setpoint. The more zones that request cooling, the more it drops the setpoint. The AHU repeats this process throughout the day to keep zones cool, but with a supply air setpoint that is no cooler than necessary.
APPENDIX B: Abbreviations

The following abbreviations may be used in graphics, schematics, point names, and other UI applications where space is at a premium.

AC - Air Conditioning
ACU - Air Conditioning Unit
AHU - Air Handling Unit
AI - Analog Input
AO - Analog Output
AUTO - Automatic
AUX - Auxiliary
BI - Binary Input
BO - Binary Output
C - Common
CHW - Chilled Water
CHWP - Chilled Water Pump
CHWR - Chilled Water Return
CHWS - Chilled Water Supply
COND - Condenser
CW - Condenser Water
CWP - Condenser Water Pump
CWR - Condenser Water Return
CWS - Condenser Water Supply
DA - Discharge Air
EA - Exhaust Air
EF - Exhaust Fan
EVAP - Evaporators
FCU - Fan Coil Unit
HOA - Hand / Off / Auto
HP - Heat Pump
HRU - Heat Recovery Unit
HTEX - Heat Exchanger
HW - Hot Water
HWP - Hot Water Pump
HWR - Hot Water Return
HWS - Hot Water Supply
MAX - Maximum
MIN - Minimum
MISC - Miscellaneous
NC - Normally Closed
NO - Normally Open
OA - Outdoor Air
PIU - Powered Induction Unit
RA - Return Air
RF - Return Fan
RH - Relative Humidity
RTU - Roof-top Unit
SA - Supply Air
SF - Supply Fan
SP - Static Pressure
TEMP - Temperature
UH - Unit Heater
UV - Unit Ventilator
VAV - Variable Air Volume
VVTU - Variable Volume Terminal Unit
W/ - with
W/O - without
WSHP - Water Source Heat Pump