SECTION 221313 - FACILITY SANITARY SEWERS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Pipe and fittings.
 2. Nonpressure and pressure couplings.
 3. Expansion joints.
 5. Encasement for piping.

1.2 ACTION SUBMITTALS
 A. Product Data: For expansion joints.
 B. Shop Drawings: For manholes. Include plans, elevations, sections, details, and frames and covers.

1.3 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from sewer system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.
 B. Product Certificates: For each type of cast-iron soil pipe and fitting, from manufacturer.
 C. Field quality-control reports.

PART 2 - PRODUCTS

2.1 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS
 A. Not Permitted

2.2 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS
 A. Not Permitted
2.3 PVC PIPE AND FITTINGS

A. PVC Corrugated Sewer Piping:
 2. Fittings: ASTM F 949, PVC molded or fabricated, socket type.

B. PVC Type PSM Sewer Piping:
 1. Pipe: ASTM D 3034, SDR 35, PVC Type PSM sewer pipe with bell-and-spigot ends for gasketed joints.
 2. Fittings: ASTM D 3034, PVC with bell ends.

2.4 CONCRETE PIPE AND FITTINGS

A. Nonreinforced-Concrete Sewer Pipe and Fittings: ASTM C 14, [Class 1] [Class 2] [Class 3], with [bell-and-spigot] [or] [tongue-and-groove] ends for gasketed joints with ASTM C 443, rubber gaskets.

B. Reinforced-Concrete Sewer Pipe and Fittings: ASTM C 76.
 1. [Bell-and-spigot] [or] [tongue-and-groove] ends for gasketed joints, with ASTM C 443, rubber gaskets.
 2. Class II, [Wall A] [Wall B] [Wall C].
 3. Class III, [Wall A] [Wall B] [Wall C].
 4. Class IV, [Wall A] [Wall B] [Wall C].
 5. Class V, [Wall A] [Wall B].

2.5 NONPRESSURE-TYPE TRANSITION COUPLINGS

A. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined and corrosion-resistant-metal tension band and tightening mechanism on each end.

B. Sleeve Materials:
 1. For Concrete Pipes: ASTM C 443, rubber.
 2. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 3. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

C. Unshielded, Flexible Couplings:
 1. Description: Elastomeric sleeve with corrosion-resistant-metal tension band and tightening mechanism on each end.
D. Ring-Type, Flexible Couplings: Elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.

2.6 CLEANOUTS

A. Cast-Iron Cleanouts: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calc or spigot connection and countersunk, tapered-thread, brass closure plug.
 1. Top-Loading Classification(s): Light Duty, Medium Duty, Extra Heavy Duty
 2. Sewer Pipe Fitting and Riser to Cleanout: ASTM A 74, Service class, cast-iron soil pipe and fittings.

2.7 MANHOLES

A. Standard Precast Concrete Manholes:
 1. Description: ASTM C 478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 2. Diameter: 48 inches minimum unless otherwise indicated.
 3. Ballast: Increase thickness of precast concrete sections or add concrete to base section, as required to prevent flotation.
 4. Base Section: 6-inch minimum thickness for floor slab and 4-inch minimum thickness for walls and base riser section; with separate base slab or base section with integral floor.
 5. Riser Sections: 4-inch minimum thickness, of length to provide depth indicated.
 6. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated; with top of cone of size that matches grade rings.
 7. Joint Sealant: ASTM C 990, bitumen or butyl rubber.
 8. Resilient Pipe Connectors: ASTM C 923, cast or fitted into manhole walls, for each pipe connection.
 9. Steps: Individual FRP steps, or ASTM A 615/A 615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D 4101, PP; wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 48 inches.
 10. Adjusting Rings: Interlocking HDPE rings, with level or sloped edge in thickness and diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
 11. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.

B. Manhole Frames and Covers:
 1. Description: Ferrous; 24-inch ID by 7- to 9-inch riser, with 4-inch- minimum-width flange and 26-inch- diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "SANITARY SEWER."

2.8 CONCRETE

A. General: Cast-in-place concrete complying with ACI 318, ACI 350/350R, and the following:

1. Cement: ASTM C 150, Type II.

B. Portland Cement Design Mix: 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio.

2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.

C. Manhole Channels and Benches: Factory or field formed from concrete. Portland cement design mix, 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio. Include channels and benches in manholes.

1. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.
 a. Invert Slope: Maximum 2 percent through manhole.
2. Benches: Concrete, sloped to drain into channel.
 a. Slope: Maximum 4 percent.

D. Ballast and Pipe Supports: Portland cement design mix, 3000 psi minimum, with 0.58 maximum water/cementitious materials ratio.

2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavating, trenching, and backfilling are specified in Section 312000 "Earth Moving."
3.2 PIPING INSTALLATION

A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground sanitary sewer piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.

B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.

C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.

D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.

E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.

F. Install gravity-flow, nonpressure, drainage piping according to the following:

1. Install piping pitched down in direction of flow, at minimum slope of 1 percent unless otherwise indicated.
2. Install piping NPS 6 and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place-concrete supports or anchors.
3. Install piping with 36-inch minimum cover.
4. Install PVC corrugated sewer piping according to ASTM D 2321 and ASTM F 1668.
5. Install PVC Type PSM sewer piping according to ASTM D 2321 and ASTM F 1668.
6. Install nonreinforced-concrete sewer piping according to ASTM C 1479 and ACPA's "Concrete Pipe Installation Manual."
7. Install reinforced-concrete sewer piping according to ASTM C 1479 and ACPA's "Concrete Pipe Installation Manual."

G. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.

3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, nonpressure, drainage piping according to the following:

4. Join PVC corrugated sewer piping according to ASTM D 2321.
5. Join PVC Type PSM sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasket joints.
8. Join dissimilar pipe materials with nonpressure-type, flexible[or rigid] couplings.

B. Pipe couplings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

1. Use nonpressure flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.
 a. Unshielded flexible couplings for pipes of same or slightly different OD.
 b. Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.
 c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.

3.4 MANHOLE INSTALLATION

A. General: Install manholes complete with appurtenances and accessories indicated.

B. Install precast concrete manhole sections with sealants according to ASTM C 891.

C. Install FRP manholes according to manufacturer's written instructions.

D. Form continuous concrete channels and benches between inlets and outlet.

E. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches above finished surface elsewhere unless otherwise indicated.

F. Install manhole-cover inserts in frame and immediately below cover.

3.5 CONCRETE PLACEMENT

A. Place cast-in-place concrete according to ACI 318.
3.6 CLEANOUT INSTALLATION

A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts, and use cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.

1. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
2. Use Medium-Duty, top-loading classification cleanouts in paved foot-traffic areas.
3. Use Extra Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.

B. Set cleanout frames and covers in earth in cast-in-place-concrete block, [18 by 18 by 12 inches] deep. Set with tops [1 inch] above surrounding grade.

C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.7 CONNECTIONS

A. Connect nonpressure, gravity-flow drainage piping to building’s sanitary building drains specified in Section 221316 "Sanitary Waste and Vent Piping."

B. Make connections to existing piping and underground manholes.

1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye fitting plus 6-inch overlap with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
2. Make branch connections from side into existing piping, NPS 4 to NPS 20. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
3. Make branch connections from side into existing piping, NPS 21 or larger, or to underground manholes by cutting opening into existing unit large enough to allow 3 inches of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe or manhole wall, encase entering connection in 6 inches of concrete for minimum length of 12 inches to provide additional support of collar from connection to undisturbed ground.

 a. Use concrete that will attain a minimum 28-day compressive strength of 3000 psi unless otherwise indicated.
 b. Use epoxy-bonding compound as interface between new and existing concrete and piping materials.
4. Protect existing piping and manholes to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

C. Connect to grease-oil-and-sand interceptors specified in Section 221323 "Sanitary Waste Interceptors."

3.8 IDENTIFICATION

A. Materials and their installation are specified in Section 312000 "Earth Moving." Arrange for installation of green warning tapes directly over piping and at outside edges of underground manholes.

1. Use warning tape or detectable warning tape over ferrous piping.
2. Use detectable warning tape over nonferrous piping and over edges of underground manholes.

3.9 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.

1. Submit separate report for each system inspection.
2. Defects requiring correction include the following:
 a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 d. Infiltration: Water leakage into piping.
 e. Exfiltration: Water leakage from or around piping.

3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
4. Reinspect and repeat procedure until results are satisfactory.

B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.

1. Do not enclose, cover, or put into service before inspection and approval.
2. Test completed piping systems according to requirements of authorities having jurisdiction.
3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
4. Submit separate report for each test.
5. Hydrostatic Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:
a. Fill sewer piping with water. Test with pressure of at least 10-foot head of water, and maintain such pressure without leakage for at least 15 minutes.
b. Close openings in system and fill with water.
c. Purge air and refill with water.
d. Disconnect water supply.
e. Test and inspect joints for leaks.

6. Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 a. Option: Test plastic gravity sewer piping according to ASTM F 1417.
 b. Option: Test concrete gravity sewer piping according to ASTM C 924.

7. Manholes: Perform hydraulic test according to ASTM C 969.

C. Leaks and loss in test pressure constitute defects that must be repaired.

D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.10 CLEANING

A. Clean dirt and superfluous material from interior of piping.

END OF SECTION