SRP Integrated System Plan Technical Working Session: Inverter-Based Resources Integration

February 24, 2023

Welcome

Bobby Olsen Senior Director, Corporate Planning, Environmental Services & Innovation (SRP)

Welcome SRP Board and Council Observers

John Hoopes SRP Association Vice President

Chris Dobson SRP District Vice President

Anda McAfee SRP Board Member

Jack White SRP Board Member

Larry Rovey SRP Board Member

Krista O'Brien SRP Board Member

Suzanne Naylor SRP Council Member

Rocky Shelton SRP Council Member

Safety & Sustainability Minute

Meeting Objectives:

- Understand the power system impacts of integrating high levels of inverter-based resources (IBR) and any uncertainties
- Highlight solutions for mitigating challenges and uncertainties
- Identify improvements to long-term planning, operational readiness, and modeling processes to better account for increasing levels of IBRs in future planning processes

Agenda

Time		Topics	Presenter	
1:00-1:05	5 min	Welcome and Meeting Overview	Bobby Olsen (SRP)	
1:05-1:20	15 min	SRP System: Inverter-Based Resource Penetrations & Readiness	Angie Bond-Simpson (SRP) Scott Anderson (SRP)	
1:20-2:10	50 min	esentations from panelists (10 min each) Panelists		
		(1) Research/Modeling Perspective	Nick Miller (HickoryLedge LLC)	
		(2) Reliability Perspective	Ryan Quint (NERC)	
		(3) Market Operations Perspective	Guillermo Alderete Bautista (CAISO)	
		(4) Renewable Dispatch Perspective	Mahesh Morjaria (Terabase Energy)	
		(5) Utility Perspective	Keith Parks (Xcel Energy)	
2:10-2:20	10 min	Coffee Break		
2:20-3:20	60 min	Facilitated panel discussion and Q&A with participants	Panelists & SRP participants Tess Williams (Sound Grid Partners) as moderator	
3:20-3:30	10 min	Wrap up and closing remarks	Angie Bond-Simpson (SRP)	

How to Ask for Technical Help in the Webinar

How to Ask a Question in the Webinar

Please submit questions for the panelists using the Q&A box.

SRP System: Inverter-Based Resource Penetrations & Readiness

Angie Bond-Simpson

Director, Integrated System Planning & Support (SRP)

Scott Anderson Director, Operational Readiness (SRP)

Inverter-Based Resources (IBR)

- IBRs connect to grid using inverters, or power electronics, that convert direct current (DC) to alternating current (AC).
- The most prevalent IBRs are solar photovoltaic, wind power and battery storage.
- In contrast, most power plants operating today generate power by driving a turbine that generates AC power directly.
- A transition towards IBRs reflects opportunity – growing sustainability goals and cost declines for these resources.

Integrated System Planning Outlook on IBRs

Planning and Operational Considerations of IBRs

Variability & Uncertainty in Generation

- Fluctuation in generation
- Requires generation forecasting
- More frequent and steeper net load ramps

No Spinning Mass

- Does not provide inertia
- Most renewables operating today were not designed for voltage and frequency control.
- Limitations on black-start support after outages

Operating Limitations

- Energy storage has limited duration and requires charging to operate.
- Most renewables operating today were not designed to be dispatched dynamically.

Integrating higher levels of IBRs requires intentional operational efforts to overcome challenges and realize opportunities.

Current Efforts Underway at SRP: Operational Readiness

Operational Readiness is the capability for SRP to operate the future grid **safely**, **reliably** and **cost-effectively** as renewable energy resources are added.

Panelist Introductions

Moderator

Tess Williams, PhD Co-Founder & Principal Sound Grid Partners

External Panelists

Research/ Modeling Perspective

Research/Modeling

Nick Miller

Principal HickoryLedge LLC

Future Opportunity and Challenges with High Levels of Inverter-based Resources

SRP

Webinar/Technical Working Session February 24, 2023

Nick Miller

Nick Miller

IBRs and Energy Policy: A Complicated Space

- Synchronous vs **Converter-based**
- Renewable Generation vs "Dynamic Enabler" vs Fossil vs Nuclear

VERs: Moderate annual averages can cause high instantaneous penetrations

Source: Drake Bartlett, Xcel 2018

Source: N. Miller, GE, NSPI Renewable Integration Study http://www.nspower.ca/site-nsp/media/nspower/CA%20DR-14%20SUPPLEMENTAL%20REIS%20Final%20Report%20REDACTED.pdf

Energy Transition has well understood stages

Consider the end points, but concentrate on successfully navigating to the next phase

Key characteristics and challenges in the different phases of system integration

Decarbonising while meeting growing demand

Time-scale and Penetration

Issues seen at different flexibility timescales

h.,

Challenges have different timing and are associated with different phases of VRE integration

Subseconds 🌧 Seconds 🗪 Minutes 🖚 Hours 🖚 Days 🖚 Months 🖚 Years									
Issues addressed	system stability	Short-term frequency control	Changes in the supply/demand; system regulation	Generation dispatch and operation scheduling	Scheduled maintenance; longer periods of surplus/deficit	Seasonal and interannual varable generation and demond			
Example issue	Withstanding large disturbances such as losing a large power plant	Random fluctuations in power demand	Increasing demond following sunrise or rising net load at sunset	Decide how many thermal plants should remain connected to the system	Hydropower availability during wet and dry season				
Relevant to integration phase	Phase 4	Phase 2 and 3		Phase 3 and 4	Phase 4 and 5	Phase 5 and 6			
			Increas	sing Share of	VREs				

Time-scale and Penetration

Issues seen at different flexibility timescales

Time-scale and Penetration

Subseconds Minutes Seconds Hours Davs Months Years Changes in the Generation dispatch Scheduled Seasonal and Short-term supply/demand; and operation maintenance: interannual frequency control Issues system stability system regulation scheduling longer periods of varable generation addressed surplus/deficit and demond Increasing demond Decide how many Withstanding large Random following sunrise or thermal plants disturbances fluctuations Hydropower availability during wet and Example such as losing in power demand rising net load should remain issue dry season a large power plant connected to at sunset the system Relevant to Phase 2 and 3 Phase 3 and 4 Phase 4 Phase 4 and 5 Phase 5 and 6 integration phase **Increasing Share of VERs**

Issues seen at different flexibility timescales

HickoryLedge

Dependence on

inverters is ONLY

relevant in these

short time frames

Today's IBRs can be (much) more stable

Source: GE Energy Consulting c.2005

Source: NREL UNIFI Consortium 2023

Source: NREL UNIFI Consortium 2023

Source: NREL UNIFI Consortium 2023

Source: Terji Nielsen, SEV Faroe Islands.

Are we ready to require GFM?

Yes & No

- We're years from IEEE Stds.
- We can't wait.
- UNIFI GFM specs (and other international experience) hugely reduces uncertainty
- <u>Utility scale</u>
 <u>batteries today</u>

Specifications for Grid-forming Inverter-based Resources Version 1

BLOG

CAPTURING THE BENEFITS OF GRID-FORMING BATTERIES: A UNIQUE WINDOW OF OPPORTUNITY

> Julia Matevosyan ESIG

https://www.esig.energy/capturing-the-benefits-of-gridforming-batteries-a-unique-window-of-opportunity/ Metlakatla 1MW/1.4MWhr BESS. c. 1996

Thanks

nicholas.miller@hickoryledge.com

Nicholas Miller

Reliability Perspective

Reliability

Ryan Quint

Director of Engineering and Security Integration North American Electric Reliability Corporation (NERC)

NERC

Reliability Perspectives

Rapid Integration of Increasing Levels of Inverter-Based Resources

Ryan D. Quint, PhD, PE Director, Engineering and Security Integration North American Electric Reliability Corporation SRP IBR Technical Working Session February 2023

RELIABILITY | RESILIENCE | SECURITY

About NERC

- Not-for-profit international regulatory authority
- Mission to assure the effective and efficient reduction of risks to reliability and security of the grid.
 - Develops and enforces Reliability Standards
 - Annually assesses seasonal and long-term reliability
 - Monitors the bulk power system through system awareness
 - Educates, trains, and certifies industry personnel
- Designated Electric Reliability Organization (ERO) for North America, subject to oversight by the Federal Energy Regulatory Commission (FERC) and governmental authorities in Canada.
- Jurisdiction includes users, owners, and operators of the bulk power system, which serves nearly 400 million people.

ERO Work Priorities

ERO Risk Management Framework

Risk Mitigation Toolbox:

- ERO Reports and Assessments
- Standard Authorization Requests
- Reliability and Security Guidelines
- Compliance Implementation Guidance
- Technical Reference Documents
- **Technical Reports**
- White Papers

- Lessons Learned
- Alerts
- Industry Outreach and Engagement
- Etc.

RELIABILITY | RESILIENCE | SECURITY

NERC IBR Strategy

NERC Disturbance Reports

https://www.nerc.com/pa/rrm/ea/Pages/Major-Event-Reports.aspx

Odessa Disturbance Reports

https://www.nerc.com/pa/rrm/ea/Documents/Odessa Disturbance Report.pdf

RELIABILITY | RESILIENCE | SECURITY

2022 Odessa Disturbance Details

RELIABILITY | RESILIENCE | SECURITY

Cause of Solar PV Reduction

Table 1.1: Causes of Solar PV Active Power Reductions				
Cause of Reduction	Odessa 2021 Reduction [MW]	Odessa 2022 Reduction [MW]		
Inverter Instantaneous AC Overcurrent	-	459		
Passive Anti-Islanding (Phase Jump)	-	385		
Inverter Instantaneous AC Overvoltage	269	295		
Inverter DC Bus Voltage Unbalance	-	211		
Feeder Underfrequency	21	148*		
Unknown/Misc.	51	96		
Incorrect Ride-Through Configuration	-	135		
Plant Controller Interactions	-	146		
Momentary Cessation	153	130**		
Inverter Overfrequency	-	_		
PLL Loss of Synchronism	389	_		
Feeder AC Overvoltage	147	_		
Inverter Underfrequency	48	_		
Not Analyzed	34	_		

* In addition to inverter-level tripping (not included in total tripping calculation.)

** Power supply failure

Review of Affected Solar Plants

Table A.1: Review of Solar PV Facilities							
Facility ID	Capacity [MW]	Reduction [MW]	POI Voltage [kV]	In-Service Date	Cause of Reduction		
Plant B	152	133	138	June 2020	Inverter phase jump (passive anti-islanding) tripping,		
Plant C	126	56	345	November 2020	Inverter phase jump (passive anti-islanding) tripping.		
Plant E	162	159	138	May 2021	Inverter ac overvoltage tripping.		
Plant U	143.5	136	138	August 2021	Inverter ac overvoltage tripping; feeder underfrequency tripping.		
Plant F	50	46	69	September 2017	Unknown.		
Plants I & J	304	196	345	June 2020	Inverter phase jump (passive anti-islanding) tripping.		
Plant V	253	106	345	July 2021	Inverter dc voltage imbalance tripping.		
Plants K & L	157.5	130	138	September 2016	Momentary cessation/inverter power supply failure.		
Plant M	155	146	138	March 2018	Inverter dc voltage impalance tripping; incorrect inverter ride through configuration.		
Plant N	110	35	138	March 2017	Unknown.		
Plant O	50	15	138	November 2016	Unknown.		
Plant P	157.5	10	138	August 2017	Inverter ac overcurrent tripping.		
Plant Q	255	12	138	December 2020	Inverter ac overcurrent tripping.		
Plant R	268	261	138	June 2021	Inverter ac overcurrent tripping.		
Plant S	100	94	138	December 2019	Inverter dc voltage imbalance tripping.		
Plant T	187	176	138	September 2021	Inverter ac overcurrent tripping; feeder underfrequency tripping.		
TOTAL		1,711					

* Denotes plants that went into commercial operation in late 2020 onward

* Naming convention of facilities is a continuation of the 2021 Odessa Disturbance; therefore, plant numbering is not necessarily alphanumeric but does match the labeling used in the 2021 Odessa Disturbance.

Rapidly Growing Solar PV Portfolio

Source: LBNL

ERCOT Interconnection Queue for 2021 2022 Odessa Events:

- Time of Event: 7,200 8,660
 MW solar PV resources in ERCOT
 - Additional 790 3,010 MW in commissioning process
- Near Future: 25,000 28,850 MW solar PV resources with signed interconnection agreements in ERCOT generation interconnection queue between now and 2023

Inverter-Based Resource Performance Enhancements:

- Project 2021-04 Modifications to PRC-002-2
- Project 2020-02 Modifications to PRC-024 (Generator Ride-Through)
- Project 2020-06 Verification of Models and Data for Generators
- Project 2021-01 Modifications to MOD-025 and PRC-019
- Project 2022-04 EMT Modeling
- Project 2021-02 Modification to VAR-002
- (Upcoming Project) Updates to EOP-004
- (Upcoming Project) IBR Performance Issues
- (FERC NOPR) Future IBR Projects...

Recommended Practices and **Industry Guidance**

IBR Risk Issues

- Poor IBR modeling during interconnection process
- Lack of adequate studies during interconnection process
- Poor and disparate interconnection requirements
- Lack of industry-wide performance standards
- Poor IBR commissioning practices
- IBR ride-through performance failures
- Pace of interconnection with insufficient reliability studies
- Complacency regarding need for emerging technologies
- Energy sufficiency and energy security risks
- Lack of industry resourcing, expertise, and knowledge

DO NOT DISCREDIT THE CRITICALITY OF EACH AND EVERY ONE OF THESE BULLETS

Market Operations Perspective

Market Operations

Guillermo Alderete Bautista

Director, Market Analysis & Forecasting California ISO (CAISO)

©Salt River Project, 2023. All rights reserved. ISP Technical Working Session: Inverter-Based Resource Integration

Inverter-Based Resources Market Operations Perspective

Guillermo Bautista Alderete, Ph.D. Director, Market Analysis and Forecasting California ISO Corporation

February 2023

California ISO

- Nonprofit public benefit corporation
- Part of Western Electricity Coordinating Council
- Uses advanced technology to balance supply and demand every 4 seconds
- Operate markets for wholesale electricity and reserves
- Manage new power plant
 interconnections and grid expansions
- Energy Imbalance Market covers 10 Western States and British Columbia with \$3.4 Billion of economic benefit so far

Renewable goals are setting the pace in multiple markets. CAISO case:

ISO Public

- Currently Installed:
 - 15,000 MW of utility-scale solar
 - 7,000 MW of wind
 - 11,000 MW of consumer rooftop solar
- Additional renewables:
 - 4,000+ MW additional utility-scale renewables by 2026
 - ~16,750 MW of consumer rooftop solar by 2026
- Projected 5000+ MW of storage and hybrid resources

Variability poses a great forecasting challenge which results in uncertainty in market and systems operations

ISO Public

The advancement of new technology is changing the markets landscape. The case of explosive growth of storage resource:

Page 52

A suite of solutions are necessary

Storage – increase the effective participation by energy storage resources.

Western EIM expansion – expand the western Energy Imbalance Market.

Demand response – enable adjustments in consumer demand, both up and down, when warranted by grid conditions.

Regional coordination – offers more diversified set of clean energy resources through a cost effective and reliable regional market.

Time-of-use rates – implement time-of-use rates that match consumption with efficient use of clean energy supplies.

Electric vehicles – incorporate electric vehicle charging systems that are responsive to changing grid conditions.

Renewable portfolio diversity – explore procurement strategies to achieve a more diverse renewable portfolio.

Flexible resources – invest in fastresponding resources that can follow sudden increases and decreases in demand.

Integration of storage resources has changed the dynamic of the regulation market

RU RD SR NR

Rapid growth in storage technologies require enhanced market design to support market participation

- Expected to have 5,000 MW of renewable + storage by 2024
- Use-limited batteries
 required complex models
- Advanced forecasting techniques needed to consider the type of configuration

Hybrid vs. Co-located	Definition	Forecasting / Dispatch
Hybrid Pol Limt 100MW	A Generating Unit, with a unique Resource ID at a single Point of Interconnection, with components that use different fuel sources or technologies.	 No aggregate forecast for hybrid Hybrid expected to follow dispatch
Co-located	A Generating Unit with a unique Resource ID that is part of a Generating Facility with other Generating	 VER component will be forecast VER dispatched rules Battery will dispatched and state of charge managed

ISO Public

Markets Operations need to internalize the complexities of inverter-based resources

Renewable forecasts are generated and consumed every 5 minutes

Renewable resources can economically bid

Renewable resources are optimally dispatched in the market like any other type of generation resource

Renewable resources receive and must follow operating instructions

Storage resources can mitigate for oversupply conditions and minimize energy curtailments

New flexible ramping product to handle uncertainty of renewable resources

Page 57

New market products to handle uncertainty explicitly

- Secures ramping capability in the fifteen-minute market and real-time dispatch
- Accounts for upward and downward ramping needs
- Compensates resources who provide ramping and charges those that consume ramping capability
- Aligns cost allocation with those who benefit from additional ramping capability to meet net load uncertainty
- CAISO is working on implementing an imbalance reserve product for the day-ahead market

Renewable Dispatch Perspective

Renewable Dispatch

Mahesh Morjaria

EVP, Plant Operational Technology Terabase Energy

©Salt River Project, 2023. All rights reserved. ISP Technical Working Session: Inverter-Based Resource Integration

Lessons Learned on IBR Dispatch

February 24, 2023

Mahesh Morjaria, Ph.D. EVP, Plant Operational Technology MMorjaria@Terabase.Energy

Copyright | © 2023 Terabase Energy, Inc. | Page 60

Lessons Learned on IBR Dispatch

Utility-scale PV Solar provides Energy, Essential Reliability Services & Flexibility

Solar hybrid plants provide Clean & Competitive Firm Capacity & Grid Enhancements

Plant controls play a critical role in enabling these services

Grid-Friendly IBR Plant

What are the key functions needed to support grid stability and reliability?

Key Capability of Grid-Friendly PV Plant

terabase

Features Required by NERC to be a Good Grid Citizen:

- Voltage regulation
- Active power control (ramping. curtailment)
- Grid disturbance ride through (voltage and frequency excursions)
- Primary frequency droop response
- Short circuit duty control

Power Control

Frequency Droop

Ride Through

Base Capability

Sources: (1) NERC: 2012 Special Assessment Interconnection Requirements for Variable Generation (2) M. Morjaria, D. Anichkov, V. Chadliev, and S. Soni. "A Grid-Friendly Plant." *IEEE Power and Energy Magazine* May/June (2014)

Solar Plant Provides Essential Reliability Services

NERC: Essential reliability services

Frequency Control

terabase

Ramping capability or flexible capacity

http://www.caiso.com/Documents/TestsShowRenewablePlantsCanBalancel ow-CarbonGrid.pdf C: Automated Generator Control

Solar Plant Provides Flexibility

Solar Provides No Regulation Reserves

Source: E3, TECO, First Solar Report "Investigating the Economic Value of Flexible Solar Power Plant Operation", https://www.ethree.com/wpcontent/uploads/2018/10/Investigating-the-Economic-Value-of-Flexible-Solar-Power-Plant-Operation.pdf

terabase

12 AM 4 AM 8 AM 12 PM 8 P M 4 PM Flexible Solar: Provides regulation reserves.

Reduced

Thermal Gen

Flexible Solar

Dispatchable

Solar

Solar

Curtailment

4,500

4,000

(No 3,500 3,000

eneration 5,000 5,000 5,000

1,500

1,000

500

Õ

3,000

Load

60% Lower

Annual curtailment

Investigating the Economic Value of Flexible Solar

Power Plant Operation

Flexibility: Key Resource Attribute of the Future Grid

PV can operate flexibly from 0 to available power (P_{avail})

PV follows AGC (4-sec) signal with high accuracy

PV can start up in seconds (when solar resource is available)

CT Combustion Turbine

CC Combined Cycle

ST Steam Turbine

Utility-scale IBR Plant is more flexible and responsive than today's fossil fleet:

Solar and Storage Provide Firm Capacity

Game Changer: Clean Energy Plant More Cost-effective Than Conventional Generation

Schedule Driven Dispatch of PV and Storage (PVS)

Plant Controls Manages Operator-entered Schedule at POI by Charging and Discharging Storage as Required

How is the grid friendly plant dispatched?

Plant Controls & SCADA System

Copyright | © 2023 Terabase Energy, Inc. | Page 71

Typical Plant Operation Over a Day

Thank You

Mahesh Morjaria, Ph.D. - mmorjaria@terabase.energy

Confidential | © 2023 Terabase Energy, Inc. | Page 73

Utility Perspective

Utility Perspective

Keith Parks

Senior Data Scientist Xcel Energy

Xcel Energy – Colorado System

- Xcel Energy Colorado
 - 4000+ MW of Wind 90% AGC capable
 - 800+ MW Utility-Scale Solar 95% AGC capable
 - 300MW pump load frequency responsive load shed capable
 - Moved black start from pumped storage facility to thermal resources
 - Invested heavily in Renewable Energy (RE) forecasting technology
 - Implemented 30min flexibility reserve to compensate for wind down ramps
 - 250MWs of lithium-ion batteries arriving Spring 2023
 - Building Power Pathways, a major transmission project to interconnect remote wind and solar resources
 - And still, we have major challenges integrating zero-emission resources

Changing Attitudes: Resource Adequacy Year-Round

Changing Climate: Summer (Jun-Sep) Peak Temperatures

Summer in Colorado is longer.

In particular, very hot days occur early in June and now extend deep into September.

For traditional summer months (July/August) there is an increase in quite hot days though without necessarily seeing our peak temperature increase...

So, not hotter, but lots more hot days. And those days start sooner and last deeper into the year.

Denver - Max Summer Temperatures

Winter Reliability

Using recent renewable energy and load years, we synthesized many 2021 and 2030 possible years. The Peak **Net Load** shifts reliability risk away from summer toward winter.

Shrinking Maintenance Window

The Colorado maintenance season is divided into Spring and Fall.

The graph shows the amount of planned outage, by week of the year, that would create a design day situation.

The maintenance window shrinks with additional solar

Shrinking Maintenance Window

The Colorado maintenance season is divided into Spring and Fall.

The graph shows the amount of planned outage, by week of the year, that would create a design day situation.

The maintenance window shrinks with additional solar

And the longer summer shortens the maintenance window.

Coffee Break

How to Ask a Question in the Webinar

Please submit questions for the panelists using the Q&A box.

thank you!

Acronyms

AC-Alternating current AGC -Automatic Generation Control **BESS-** Battery energy storage system BTM -Behind the meter **BMS-** Battery management system CAES- Compressed air energy storage **CCS** - Carbon Capture & Sequestration **DC-Direct current** EMS- Energy management system **GFM-** Grid-Forming HVDC- High-voltage direct current **IEEE** -Institute of Electrical and Electronics Engineers kV-Kilovolt

MW-Megawatt POI- Point of interconnection **PV-** Solar photovoltaics PVS- Solar (PV) and storage **RE-** Renewable Energy **RTU-** Remote terminal units SCADA- Supervisory Control And Data Acquisition **SNG-** Synthetic Natural Gas STATCOM – Static Synchronous Compensator SVC – Static Var Compensator **VER-** Variable Energy Resources VRE- Variable Renewable Energy