APPENDIX A

SRP's Integrated System Plan Assumptions Summary

SRP INTEGRATED SYSTEM PLAN STUDY PLAN APPENDIX – ASSUMPTIONS USED IN SCENARIOS, SENSITIVITIES AND STRATEGIC APPROACHES

This appendix details the assumptions underlying the key drivers outlined in the Integrated System Plan (ISP) Summary Study Plan document for the scenarios, sensitivities and strategic approaches that SRP will analyze. These assumptions were developed in collaboration with the ISP Advisory Group during the *Prepare* Phase of the ISP (November 2021–April 2022). SRP subsequently updated the assumptions in February 2023 to incorporate impacts from the Inflation Reduction Act of 2022. Additional details on these assumptions are included in the meeting materials from the *Advisory Modeling Subgroup Meeting 2: Inputs for the ISP Study Plan*, *Advisory Modeling Subgroup Meeting 3: Inputs for the ISP Study Plan* – *Part 2* and *Advisory Group Meeting 9: Continuing Forward.*¹

Scenarios

Current Trends

Key Drivers	Assumptions
Economic Growth	Economic load grows 1,645 MW by 2035 and residential and commercial
	load grows by 1,776 MW by 2035, driven by an average population
	growth of 1.5% per year. The resulting total load growth is 2.9% per year.
Temperature Rise	"RCP ² 4.5" climate scenario from the Intergovernmental Panel on
	Climate Change (IPCC)
Carbon Reduction Policy	No federal or state policy beyond SRP's 2035 Sustainability Goals
	(reduce the emissions intensity [CO2 per MWh] by 65% from 2005 levels
	by 2035)
Electrification	500,000 electric vehicles by 2035; 83% residential electric heating
	adoption by 2035
Distributed Generation	1,300 MW distributed solar by 2035
Energy Efficiency	3,800 GWh total energy efficiency by 2035
Renewable and Battery	Midpoint between low cost (Strong Climate Policy Scenario) and high
Storage Costs	costs (Desert Contraction Scenario) (see below)
Gas Resource Costs	Energy Information Administration 2022 Annual Energy Outlook (AEO)
Emerging Technology	Carbon capture and sequestration (CCS) available in 2035. 100%
Availability	hydrogen and nuclear (small modular reactors) are not available by 2035.
Emerging Technology	Gas with CCS costs are midpoint between low costs (Strong Climate
Cost	Policy Scenario) and high costs (Desert Contraction Scenario) (see
	below). 100% hydrogen and nuclear are not available by 2035.

¹ https://www.srpnet.com/grid-water-management/grid-management/integrated-system-plan

² Representative Concentration Pathway- RPC

Hydrogen Prices	Green hydrogen forecast developed by E3 using electricity production from solar (blend between Arizona and Utah using Renewable and Battery Storage Costs above), hydrogen production using alkaline electrolyzers (blend between optimistic and conservative cost declines from California Energy Commission publication CEC-500-2019-055), hydrogen storage (using costs from Department of Energy project ST-001), and hydrogen transport (blend between AZ and UT transport costs, using Argonne's Hydrogen Delivery Scenario Analysis Model (HDSAM) tool). \$3/kg hydrogen production tax credit from Inflation Reduction Act applied at 85% monetization.
Gas Prices	Energy Information Administration (EIA) 2021 AEO "Reference" case regionalized based on SRP's gas supply
Hydro Availability	Hydro capacity and energy availability remain relatively constant at current drought conditions.
Market Support	Due to near-term capacity constraints, actions taken to contract maximum market capacity through 2032; afterwards 525 MW of market potential available.

Desert Boom

Key Drivers	Assumptions
Economic Growth	Economic development load grows by 2,900 MW by 2035 and population
	grows by an average rate of 1.8% per year.
Temperature Rise	"RCP 8.5" climate scenario from the IPCC
Carbon Reduction Policy	Same as Current Trends
Electrification	600,000 electric vehicles by 2035; 86% residential electric heating
	adoption by 2035
Distributed Generation	1,800 MW distributed solar by 2035
Energy Efficiency	Same as Current Trends
Renewable and Battery	Same as Current Trends
Storage Costs	
Gas Resource Costs	Same as Current Trends
Emerging Technology	Same as Current Trends
Availability	
Emerging Technology	Same as Current Trends
Cost	
Hydrogen Prices	Same as Current Trends
Gas Prices	Same as Current Trends
Hydro Availability	Same as Current Trends
Market Support	Same as Current Trends

Desert Contraction

Key Drivers	Assumptions
Economic Growth	Economic development load growth rate peaks in 2026 before declining,
	resulting in a total of 597 MW added by 2035 compared to 2022.
	Population growth rate follows a similar trend, peaking in 2027 before
	declining. This results in an average population growth rate of 0.4% per
	year between 2023 and 2035.
Temperature Rise	"RCP 8.5" climate scenario from the IPCC
Carbon Reduction Policy	Same as Current Trends
Electrification	Same as Current Trends
Distributed Generation	Same as Current Trends
Energy Efficiency	Same as Current Trends
Renewable and Battery	NREL 2022 ATB Market + Policy Conservative Scenario forecast.
Storage Costs	Inflation Reduction Act Investment Tax Credit (ITC) and Production Tax
	Credit (PTC) monetized at 80%.3 Cost increases for solar (15%), wind
	(30%) and batteries (30%) added assuming existing supply chain
	challenges and trade friction worsen.4
Gas Resource Costs	Same as Current Trends
Emerging Technology	Same as Current Trends
Availability	
Emerging Technology	Gas with CCS based on Energy Information Administration 2022 AEO
Cost	+20%. 100% hydrogen and nuclear are not available by 2035.
Hydrogen Prices	Green hydrogen forecast developed by E3 using electricity production
	from UT solar (using Renewable and Battery Storage Costs above),
	hydrogen production using alkaline electrolyzers (conservative cost
	decline from California Energy Commission publication CEC-500-2019-
	055), hydrogen storage in UT (using costs from Department of Energy
	project ST-001) and hydrogen transport to AZ (using Argonne's Hydrogen
	Delivery Scenario Analysis Model (HDSAM) tool). \$3/kg hydrogen
	production tax credit from Inflation Reduction Act applied at 80%
	monetization.
Gas Prices	Same as Current Trends
Hydro Availability	Glen Canyon Dam generation production is unavailable at the beginning
	of the study period (2025). Other hydrogeneration on the Colorado River
	and Salt River remain consistent with Current Trends assumptions.

3

⁴ A smaller increase is made to solar as NREL's conservative scenario forecasts for solar already include adjustment to reflect trade frictions.

³ Includes the base credit and 5x multiplier for satisfying prevailing wage and apprenticeship requirements. Includes the Energy Community bonus (+10%) for Arizona wind built after the retirement of Coronado (and Springerville in the Minimum Coal strategic approach). 80% reflects uncertainty in cost to monetize tax credits (e.g., profit margin for tax equity investor or transfer entity, transaction costs) and to satisfy applicable requirements (e.g., prevailing wage). Assumed phase-out post-2045.

Market Support	Loss of Glen Canyon Dam and other hydrogeneration facilities in the
	West results in 0 MW of market support available. Existing market
	purchases currently contracted by SRP are honored.

Strong Climate Policy

Key Drivers	Assumptions
Economic Growth	Same as Current Trends
Temperature Rise	Same as Current Trends
Carbon Reduction Policy	Federal policy that requires a CO2 mass emissions (tons) reduction by
	85% from 2005 level by 2035.
Electrification	Electric vehicle adoption consistent with reaching economy-wide net-zero
	emissions by 2050 (975,000 by 2035); 86% residential electric heating
	adoption by 2035
Distributed Generation	2,300 MW of distributed solar by 2035
Energy Efficiency	Federal codes, standards and incentives lead to higher energy efficiency
	growth, reaching 4,500 GWh total energy efficiency by 2035.
Renewable and Battery	NREL 2022 ATB Market + Policy Moderate Scenario forecast. Inflation
Storage Costs	Reduction Act ITC and PTC monetized at 90% ^{5,6} . All near-term supply
	chain impacts are fully resolved by 2025.
Gas Resource Costs	Energy Information Administration 2022 AEO
Emerging Technology	Gas with CCS available in 2030, 100% green hydrogen available in 2034,
Availability	and nuclear (small modular reactors) available in 2034
Emerging Technology	Energy Information Administration 2022 AEO. Inflation Reduction Act ITC
Cost	applied to nuclear and 100% hydrogen, and CCS tax credit applied to gas
	with CCS all at 90% monetization.4 100% hydrogen unit based on frame
	combustion turbine.
Hydrogen Prices	Green hydrogen forecast developed by E3 using electricity production
	from AZ solar (using Renewable and Battery Storage Costs above),
	hydrogen production using alkaline electrolyzers (optimistic cost decline
	from California Energy Commission publication CEC-500-2019-055),
	hydrogen storage in AZ (using costs from Department of Energy project
	ST-001) and hydrogen transport (using Argonne's Hydrogen Delivery
	Scenario Analysis Model (HDSAM) tool). \$3/kg hydrogen production tax
0.0:	credit from Inflation Reduction Act applied at 90% monetization.
Gas Prices	EIA 2021 AEO "Low Oil and Gas Supply" case regionalized based on
11 1 4 11 1111	SRP's gas supply
Hydro Availability	Same as Current Trends

⁵ ITC and PTC include the base credit and 5x multiplier for satisfying wage and apprenticeship requirements. 90% reflects uncertainty in cost to monetize tax credits (e.g., profit margin for tax equity investor or transfer entity, transaction costs) and to satisfy applicable requirements (e.g., prevailing wage). Assumed phase-out post-2045.

⁶ Includes the Energy Community bonus (+10%) for Arizona wind built after the retirement of Coronado (and Springerville in the Minimum Coal strategic approach).

Market Support	Favorable regional resource and load diversity allows for the potential for the wider region to carry slightly less total resource capacity while maintaining the same level of reliability. SRP assumes a regional
	coordination program and a regional diversity benefit and tests this assumption by reducing its Planning Reserve Margin requirement from 16% to 13%. Capacity (MW) market availability assumptions are consistent with Current Trends.

Sensitivities

Sensitivity	Assumptions
High Demand Response	Increased expansion in demand response over time, reaching 400 MW total Demand Response by 2035.
High Energy Efficiency	Federal codes, standards and incentives lead to higher energy efficiency growth, reaching 4,500 GWh total energy efficiency by 2035.
High Distributed Generation	Distributed solar and battery adoption reach 2,300 MW and 249 MW, respectively, by 2035.
Increased Load Management	Increased load flexibility through managed electric vehicle (EV) charging or other flexible loads. Modeled as a virtual battery addition with limitations on when it can charge or discharge.
Regional Diversity	Favorable regional resource and load diversity allows for the potential of a reduced loss of load probability on SRP's system. SRP tests this assumption by reducing the minimum Planning Reserve Margin requirement from 16% to 13%.
High Gas Price	EIA 2021 AEO "Low Oil and Gas Supply" case regionalized based on SRP's gas supply
Low Gas Price	EIA 2021 AEO "High Oil and Gas Supply" case regionalized based on SRP's gas supply
Volatile Gas Price	EIA 2021 AEO "Reference" gas regionalized based on SRP's gas supply, adjusted to reflect gas price volatility observed from 2000-2010
High Technology Cost	NREL 2022 ATB Market + Policy Conservative Scenario forecast. Inflation Reduction Act ITC and PTC monetized at 80%. Cost increases for solar (15%), wind (30%), and batteries (30%) added assuming existing supply chain challenges and trade friction worsen.
Low Technology Cost	NREL 2022 ATB Market + Policy Moderate Scenario forecast. Inflation Reduction Act ITC and PTC monetized at 90%9. All near-term supply chain impacts are fully resolved by 2025.

⁷ Includes the base credit and 5x multiplier for satisfying prevailing wage and apprenticeship requirements. Includes the Energy Community bonus (+10%) for Arizona wind built after the retirement of Coronado (and Springerville in the Minimum Coal strategic approach). 80% reflects uncertainty in cost to monetize tax credits (e.g., profit margin for tax equity investor or transfer entity, transaction costs) and to satisfy applicable requirements (e.g., prevailing wage). Assumed phase-out post-2045.

⁹ Includes the base credit and 5x multiplier for satisfying wage and apprenticeship requirements for ITC and PTC. Includes the Energy Community bonus (+10%) for Arizona wind built after the retirement of Coronado (and Springerville in the Minimum Coal strategic approach). Monetization range reflects uncertainty in cost to monetize tax credits (e.g., profit margin for tax equity investor or transfer entity, transaction costs) and to satisfy applicable requirements (e.g., prevailing wage). Assumed phase-out post-2045.

⁸ A smaller increase is made to solar as NREL's conservative scenario forecasts for solar already include adjustment to reflect trade frictions.

Strategic Approaches

Tech Neutral

Key Drivers	Assumptions
Technology Availability	All resource technologies available, limits based on technical feasibility
	availability of new resources (chart below). Strong Climate Policy
	Scenario includes accelerated availability dates for CO2 capture (2030),
	100% green H2 (2034), and nuclear (2034).

20	025	2026	2027	2028	2029	2030	Year 2031	203	2 20	33 20	34 2	035	2036	2037	2038	2039	2040
Customer Programs	App	lied to	Load For	ecast: E	nergy Eff	iciency, D	emand	Respo	onse, D	istributed	d Gene	ration					
Solar	Assi	umptio	n reflectir	ng feasib	ility cons	ideration:	up to 1	000 M	IW sola	r/yr							
Batteries	Assı	umptio	n reflectir	ng feasib	ility cons	ideration:	up to 6	00 MV	V 4-hr s	torage/y	r						
Wind	Avai	lability	increase	s with tr	ansmissio	on timelin	es, coa	l retire	ments o	pen up a	additior	nal trai	nsmissio	n			
Biomass	Limi	ted to	140 MW I	based o	n fuel ava	ailability e	stimate	S									
Gas	Larg	jer gas	configura	ations u	navailable	e until 202	27+										
Hydrogen						Fut	ure Tec	h; Gre	en H2 b	lended v	vith gas	throu	gh 2040	, green	H2 there	after	
Geothermal							Tir	ming re	eflects t	ransmiss	ion, de	velopi	ment risk	C			
Hydro Pumped Storage										Future ⁻	Tech						
Gas w/ CO2 Capture												Fut	ure Tech	ı			
Biomass w/ CO2 Capture												Fut	ure Tech	; Limited	d to 50 N	W by 20	35
Nuclear																	ture ech

No New Fossil

Key Drivers	Assumptions
Technology Availability	New gas and gas w/CO2 capture are removed as available resource
	technologies

Minimum Coal

Key Drivers	Assumptions
Technology Availability	New gas and gas w/CO2 capture are removed as available resource
	technologies
Coal Plant Operational	Evaluates impacts from Coronado Generating Station Units 1 and 2 and
Changes	Springerville Generating Station Unit 4 operating seasonally beginning in
	2025 (off-line for three months of the year during non-peak periods) and
	SRP fully exiting coal by 4/30/2034.

Revision History

ust 2022 Orig	inal
ch 2023 Upd	ated to incorporate impacts from the Inflation Reduction Act into technology costs.
	ected understated High DG sensitivity assumption and economic growth assumption in Desert Boom scenario.
(ch 2023 Upd 2023 Corr