SECTION 260536 - CABLE TRAYS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Ladder cable trays.
 3. Trough cable trays.
 4. Fiberglass cable trays.

B. Related Requirements:
 1. Section 270536 "Cable Trays for Communications Systems" for cable trays and accessories serving communications systems.

1.2 SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For each type of cable tray.

C. Delegated-Design Submittal: For seismic restraints.

D. Field quality-control reports.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR CABLE TRAYS

A. Cable Trays and Accessories: Identified as defined in NFPA 70 and marked for intended location, application, and grounding.

B. Sizes and Configurations: See the Cable Tray Schedule on Drawings for specific requirements for types, materials, sizes, and configurations.

C. Structural Performance: See articles on individual cable tray types for specific values for uniform load distribution, concentrated load, and load and safety factor parameters.

2.2 LADDER CABLE TRAYS

A. Description:
 1. Configuration: Two I-beam side rails with transverse rungs welded to side rails.
 2. Rung Spacing: minimum 6 inches o.c.
3. Radius-Fitting Rung Spacing: 9 inches at center of tray's width.
5. No portion of the rungs shall protrude below the bottom plane of side rails.
6. Structural Performance of Each Rung: Capable of supporting a maximum cable load, with a safety factor of 1.5, plus a 200-lb concentrated load, when tested according to NEMA VE 1.
8. Straight Section Lengths: minimum 10 feet except where shorter lengths are required to facilitate tray assembly.
9. Width: minimum 6 inches and maximum 24 inches unless otherwise indicated on Drawings.
11. Class Designation: Comply with NEMA VE 1, [Class 12B] [Class 12C] [Class 20B] [Class 20C]
12. Splicing Assemblies: Bolted type using serrated flange locknuts.
14. Splice Plate Capacity: Splices located within support span shall not diminish rated loading capacity of cable tray.

2.3 SINGLE-RAIL CABLE TRAYS

A. Description:
1. Configuration: Center rail with extruded-aluminum rungs arranged symmetrically about the center rail.
2. Construction: Aluminum rungs mechanically connected to aluminum center rail in at least two places, with ends finished to protect installers and cables.
3. Rung Spacing: minimum 6 inches o.c.
4. Radius-Fitting Rung Spacing: 9 inches at center of tray's width.
5. Straight Section Lengths: minimum 10 feet except where shorter lengths are required to facilitate tray assembly.
6. Width: minimum 6 inches and maximum 24 inches unless otherwise indicated on Drawings.
7. Support Point: Splice fittings shall be hanger support point.
8. Support Spacing: Support each section at midpoint. Support wall-mounted sections a maximum of one-sixth of the section length from each end.
9. Loading Depth: minimum 4 inches.
11. Splicing Assemblies: Bolted type using serrated flange locknuts.
12. Splicing Assembly Capacity: Splices located within support span shall not diminish rated loading capacity of cable tray.
13. Hardware and Fasteners: ASTM F 593 and ASTM F 594 stainless steel, Type 316
14. Splices and Connectors: Protect cables from edges of center rail and do not intrude into cable fill area.
2.4 FIBERGLASS CABLE TRAYS

A. Description:
1. Configuration: Two longitudinal members with rounded edges and smooth surfaces, complying with NEMA FG 1.
2. Materials: Straight section structural elements; side rails, rungs and splice plates shall be pultruded from glass-fiber-reinforced [polyester] [vinyl ester] resin, complying with NEMA FG 1 and UL 568.
3. Fasteners: Fiberglass-encapsulated, ASTM F 593 and ASTM F 594 stainless steel, Type 316. Design fasteners so that no metal is visible when fully assembled and tightened. Fastener encapsulation shall not be damaged when torqued to manufacturer's recommended value.
4. Minimum Usable Load Depth: 3 inches according to NEMA FG 1.
5. Straight Section Lengths: 10 feet.
6. Width: minimum 6 inches and maximum 24 inches unless otherwise indicated on Drawings.
7. Class Designation: Comply with NEMA VE 1, [Class 12B] [Class 12C] [Class 20B] [Class 20C]
8. Temperature Rating: Reduce the load rating of tray exposed to temperatures above 75 deg F according to Table 4-3, "Working Loads," in NEMA FG 1.
10. Splicing Assemblies: Minimum four nuts and bolts per plate. Splice plates shall be furnished with straight sections and fittings.
11. Splicing Assembly Capacity: Splices located within support span shall not diminish rated loading capacity of cable tray.

2.5 CABLE TRAY ACCESSORIES

A. Fittings: Tees, crosses, risers, elbows, and other fittings as indicated, of same materials and finishes as cable tray.
B. Covers: Louvered [Ventilated-hat] [2-in-3 pitch] type made of same materials and with same finishes as cable tray.
C. Barrier Strips: Same materials and finishes as for cable tray.
D. Cable tray supports and connectors, including bonding jumpers, as recommended by cable tray manufacturer.

2.6 WARNING SIGNS

A. Lettering: 1-1/2-inch high, black letters on yellow background with legend "Warning! Not To Be Used as Walkway, Ladder, or Support for Ladders or Personnel."
B. Comply with requirements for fasteners in Section 260553 "Identification for Electrical Systems."
PART 3 - EXECUTION

3.1 CABLE TRAY INSTALLATION

A. Install cable trays according to NEMA VE 2.

B. Install cable trays as a complete system, including fasteners, hold-down clips, support systems, barrier strips, adjustable horizontal and vertical splice plates, elbows, reducers, tees, crosses, cable dropouts, adapters, covers, and bonding.

C. Fasten cable tray supports to building structure and install seismic restraints.

D. Design fasteners and supports to carry cable tray, the cables, and a concentrated load of 100 lb. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems".

E. Install center-hung supports for single-rail trays designed for 60 versus 40 percent eccentric loading condition, with a safety factor of 3.

F. Make connections to equipment with flanged fittings fastened to cable trays and to equipment. Support cable trays independent of fittings. Do not carry weight of cable trays on equipment enclosure.

G. Install expansion connectors where cable trays cross building expansion joints and in cable tray runs that exceed dimensions recommended in NEMA VE 2. Space connectors and set gaps according to applicable standard.

H. Seal penetrations through fire and smoke barriers. Comply with requirements in Section 078413 "Penetration Firestopping."

I. Install capped metal sleeves for future cables through firestop-sealed cable tray penetrations of fire and smoke barriers.

J. Install barriers to separate cables of different systems, such as power, communications, and data processing; or of different insulation levels, such as 600, 5000, and 15 000 V.

K. Install permanent covers, if used, after installing cable. Install cover clamps according to NEMA VE 2.

L. Install warning signs in visible locations on or near cable trays after cable tray installation.

3.2 CABLE TRAY GROUNDING

A. Ground cable trays according to NFPA 70 unless additional grounding is specified. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."
B. Cable trays with electrical power conductors shall be bonded together with splice plates listed for grounding purposes or with listed bonding jumpers.

C. Cable trays with single-conductor power conductors shall be bonded together with a grounding conductor run in the tray along with the power conductors and bonded to the tray at 72-inch intervals. The grounding conductor shall be sized according to NFPA 70, Article 250.122, "Size of Equipment Grounding Conductors," and Article 392, "Cable Trays."

D. Bond cable trays to power source for cables contained within with bonding conductors sized according to NFPA 70, Article 250.122, "Size of Equipment Grounding Conductors."

3.3 CABLE INSTALLATION

A. Install cables only when each cable tray run has been completed and inspected.

B. Fasten cables on horizontal runs with cable clamps or cable ties according to NEMA VE 2. Tighten clamps only enough to secure the cable, without indenting the cable jacket.

C. Fasten cables on vertical runs to cable trays every 18 inches.

D. Fasten and support cables that pass from one cable tray to another or drop from cable trays to equipment enclosures. Fasten cables to the cable tray at the point of exit and support cables independent of the enclosure. The cable length between cable trays or between cable tray and enclosure shall be no more than 72 inches.

E. Tie MI cables down every 36 inches where required to provide a 2-hour fire rating and every 72 inches elsewhere.

F. In existing construction, remove inactive or dead cables from cable trays.

3.4 CONNECTIONS

A. Connect raceways to cable trays according to requirements in NEMA VE 2 and NEMA FG 1.

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections[with the assistance of a factory-authorized service representative]:
 1. After installing cable trays and after electrical circuitry has been energized, survey for compliance with requirements.
 2. Visually inspect cable insulation for damage. Correct sharp corners, protuberances in cable trays, vibrations, and thermal expansion and contraction conditions, which may cause or have caused damage.
3. Verify that the number, size, and voltage of cables in cable trays do not exceed that permitted by NFPA 70. Verify that communications or data-processing circuits are separated from power circuits by barriers or are installed in separate cable trays.

4. Verify that there are no intruding items such as pipes, hangers, or other equipment in the cable tray.

5. Remove dust deposits, industrial process materials, trash of any description, and any blockage of tray ventilation.

6. Visually inspect each cable tray joint and each ground connection for mechanical continuity. Check bolted connections between sections for corrosion. Clean and retorque in suspect areas.

7. Check for missing, incorrect, or damaged bolts, bolt heads, or nuts. When found, replace with specified hardware.

8. Perform visual and mechanical checks for adequacy of cable tray grounding; verify that all takeoff raceways are bonded to cable trays. Test entire cable tray system for continuity. Maximum allowable resistance is 1 ohm.

B. Prepare test and inspection reports.

END OF SECTION